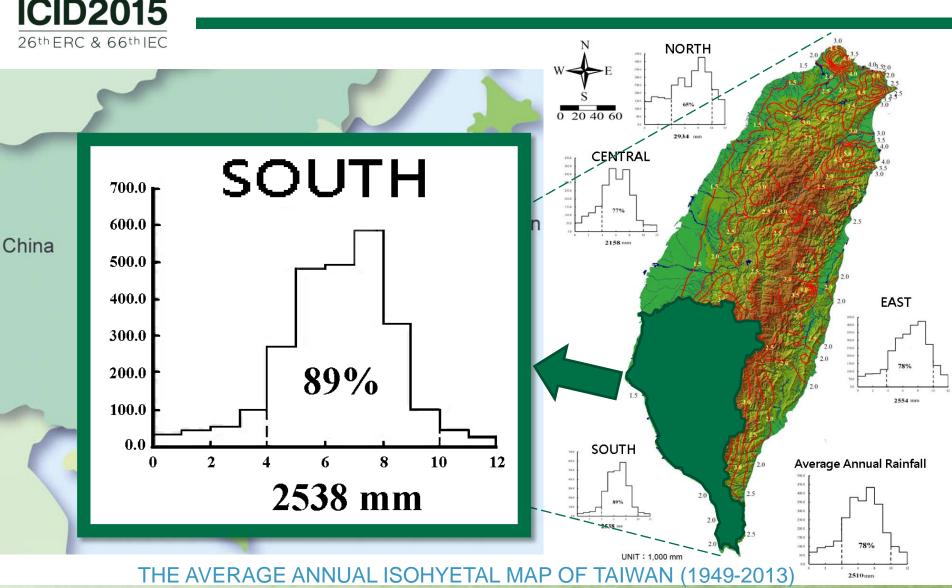


THE IMPACT OF MANAGEMENT PRACTICE ON YIELD AND IRRIGATION WATER USE EFFICIENCY FOR PADDY RICE UNDER SHORTAGE ENVIRONMENT

Yi-Ju Lin pippolin@msn.com



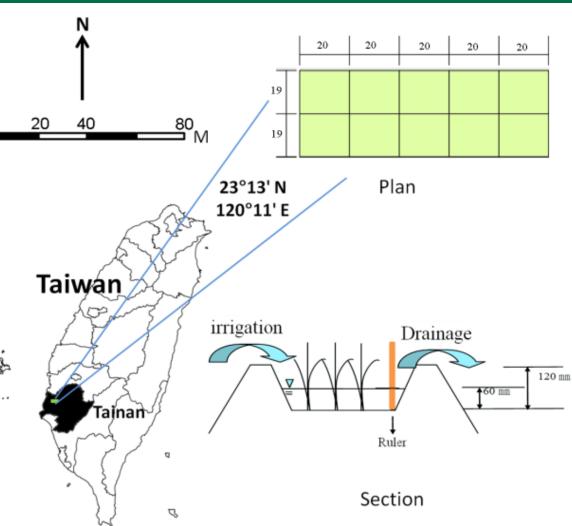
Presentation outlines

- 1. Introduction
- 2. Materials and Methods
- 3. Results and Discussions
- 4. Conclusion and Suggestion

Introduction

Introduction

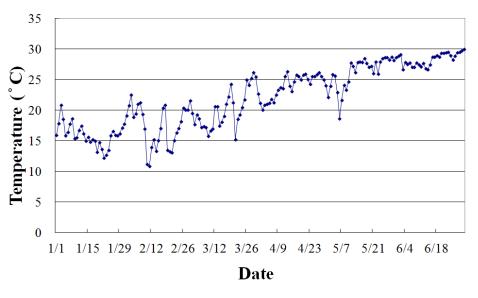
	ВМР		Modify SRI	МВМР
Planting Date	January 16th	February 16 th	January 16th	February 16 th
Reaping Date	June 4 th	June 14 th	June 4 th	June 14 th
Growth Period	140 days	119 days	140 days	119 days

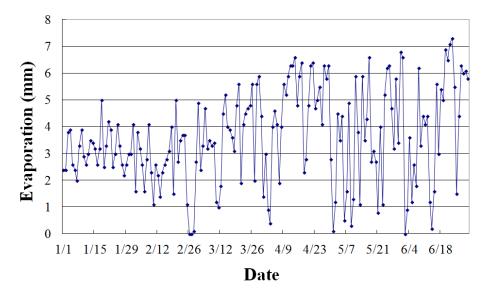

- BMP: the best water management practice.
- Modify SRI: the modify system of rice intensification.
- MBMP: conducting rotation irrigation interval of 7 days during heading stage.

Materials

O Material:

- The experiment rice variety would be Tainan No. 11, which is widely used in Taiwan with high yields.
- The soil texture of the experiment fields is sandy clay loam.

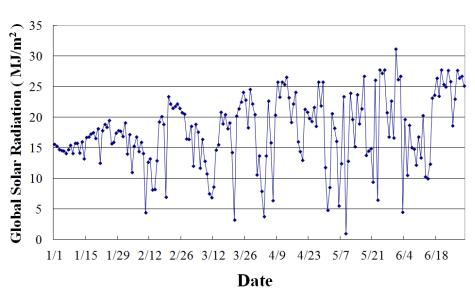


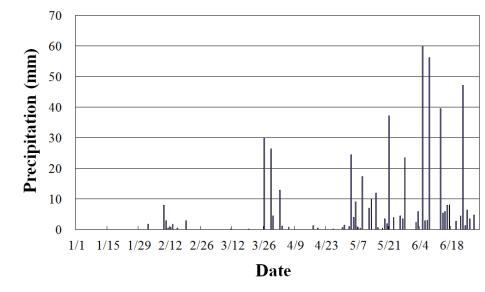

Materials

O Experimental Environment

Meteorological Information

Average Daily Temperature


Average Daily Evaporation


Materials

O Experimental Environment

Meteorological Information

Global Solar Radiation

Daily Precipitation

- Analysis of Variance
- Analysis of Impact on Crop Water Requirement of Paddy Rice
- Analysis of Drought Tolerance and Water Saving Efficiency of Paddy Rice
- Water Resource Productivity Index

O Analysis of Variance

 This research took analysis of variance with randomized complete block designs in hope of learning the differences in various responses to irrigation, of which by applying two different estimate variances would reach the same result as comparing various average numbers.

SST= SSt+ SSb+SSe

SST: Total sum of squares

SSt: Treatment sum of squares

SSb: Block sum of squares

Sse: Error sum of squares

O Analysis of Impact on Crop Water Requirement of Paddy Rice

• This research adopts the most accurate Penman-Monteith Equation (Monteith, 1994) to calculate the reference crop water (ET₀).

ET 0 =
$$\frac{0.408 \Delta(R_n - S) + \gamma \frac{900}{T + 273} U_2(e_a - e_d)}{\Delta + \gamma (1 + 0.34 U_2)}$$

• The ET₀ of Tainan area could plus crop coefficient with various planting interval could further obtain the crop water requirement (ET_{crop})in different growth stages.

$$ET_{crop} = K_c \times ET_0$$

O Analysis of Drought Tolerance

$$R_i = \left(1 - \frac{Y_i}{Y_a}\right) \times 100\%$$

R_i: the yield reduction rate (%) under different management practice

Y_i: the yield under different management practice (Kg/ha)

Y_a: the paddy rice yield in controlled area under general management practice (Kg/ha)

O Analysis of Water Saving Efficiency

$$S_{i} = \left(1 - \frac{FIR_{i}}{FIR_{a}}\right) \times 100 \%$$

S_i: the water saving rate (%) of first-season paddy rice under different management practice

FIR_i: the field irrigation water of first-season paddy field under different management practice (m³/ha)

FIR_a: the field irrigation water of first-season paddy rice in controlled under general management practice(m³/ha)

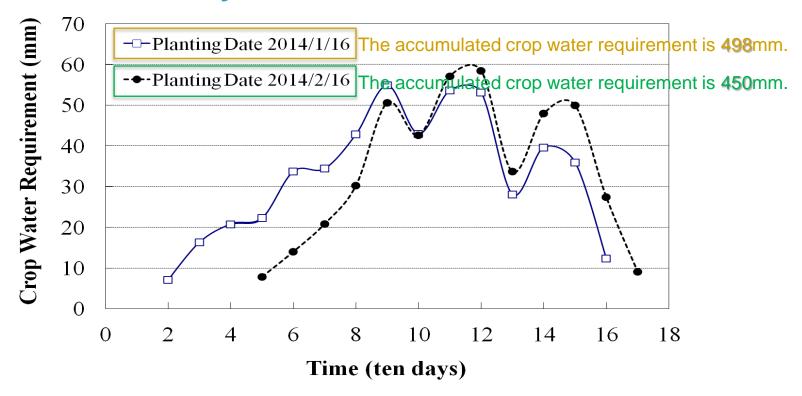
O Water Resource Productivity Index

WB
$$_{i} = \frac{Y_{i}}{FIR_{i}}$$

WB_i: the water resource productivity under various management practice (Kg/m³)

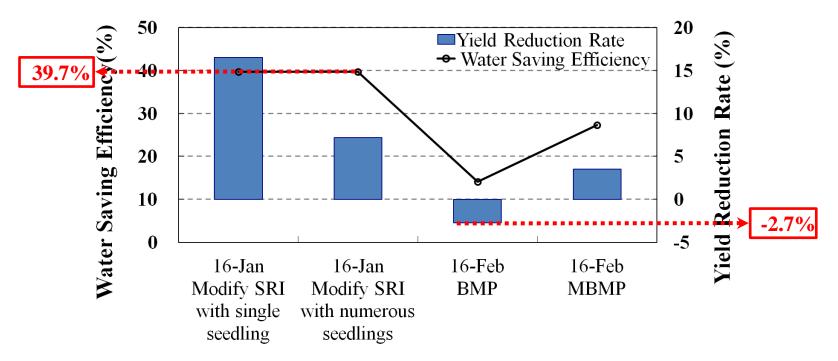
 Y_i : the productivity under various management practice (Kg/ha)

FIR; the field irrigation water under various management practice

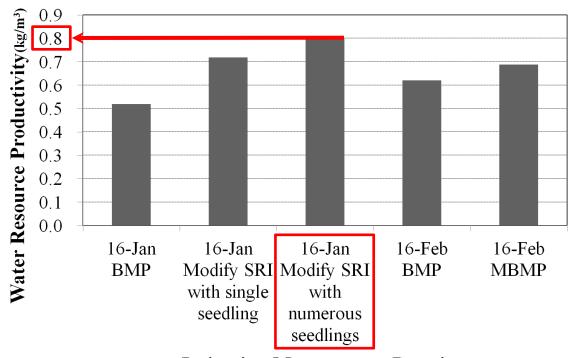

O Analysis of the Impact on Management Practice to Agronomic Traits

Variable		Different Management Practice	Error
Degrees of Freedom		4	10
	plant height	43.8**	19.1
	total tiller number per cluster	207.9**	17
	effective tiller number per cluster	205.3**	16.1
Mean	spikelet number per spike	2580.0**	98.1
Square	grain number per spike	1750.5**	99
	spike weight per cluster	0.0034**	0.00022
	fertility	123.7**	9.2
	yield	1003479**	53745

Note: *and**shows significant difference on level of 5% and 1%

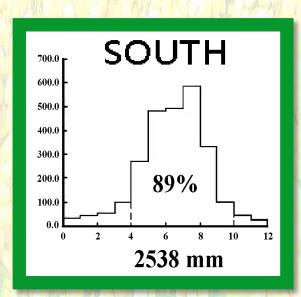


O Analysis of Impact on Crop Water Requirement and Field Irrigation Water for Different Management Practice of Paddy Rice


O Analysis of the Impact on Management Practice to Yield Reduction Rate and Water Saving Efficiency

Irrigation Management Practice

O Analysis of the Impact on Management Practice to Water Resource Productivity



Irrigation Management Practice

Conclusion and Suggestion

 This research applies the irrigation experiment design that combines regional rainfall, physiological characteristic of crops and rotation irrigation.

Conclusion and Suggestion

- In the overall evaluation of yield reduction rate and water saving rate, the field irrigation water of first-season paddy rice planted on February 16th has reached water saving efficiency of 14.1%~27.3%, comparing with the ones planted on January 16th.
- In addition, the field irrigation water of Modify SRI on January 16th has reached water saving efficiency of 39.7%, comparing with BMP on January 16th, but has influence on yield.
- On water resource productivity, Modify SRI with numerous seedling is also the best management practice.

Conclusion and Suggestion

- To view from the growing days and crop water requirement, the plant date of first crop adjusted from January 16th to February 16th, its growing days would change from 140 days to 119 days; and the accumulated crop water requirement from 498mm to 450mm.
- The field irrigation water decreases due to the extension of rotation irrigation interval. This finding could be applied on facility preparation of paddy rice hovering stage and irrigation water use plan establishment.

Thank you for your attention.