

Philippe Ker Rault

Alterra WUR, philippe.ker_rault@wur.nl

Description of the case study

Poject's name	Country	City	Start Date-End Date	Water Sources	Uses	
WAWARIA	Algeria	Ouargla		Domestic WasteWater	Irrigation	
		-	Sources			
			Origin	Industrial, domestic, urban		
			Water reused (m ³ /Y)	40 m	40 m3/day	
			Uses			
			Crops tomatoes, beetroot, cucober, p lettuce, peas		cucober, potatoes, , peas	
V			Irrigated Area (Ha)	0.1	152	
			Cost of the Cubic meter (€/m	1³) N	A	
	18 .		Water Reuse Chain			
			Treatment	2Lagoo.	η,	
HT.			Disinfection Nano Filtration		ation	
		N	Storage Capacity (m ³)	Tank (3*24m3 for irriga	tion), Lagoon (NA)	
			Irrigation	Dripp Irrigation		

EXAMPLE-Description of the case study

- To give a Second life to water that is already used for domestic purposes and disposed, by appropriate treatment and management.
- Study of treated waste water potential for irrigation in Arid region
- Study accumulation of heavy metals and pathogens in soil & plants
- Train local practitioners to use tertiary treatment device, irrigation techniques with treated waste water
- Contribute to the definition of norms and standards for waste water reuse.

How do I illustrate the question:

Which practices, technologies and institutional framework to create effective, safe and cost effective water reuse chain?

How do l illustrate the question: Which practices, technologies and institutional framework to

create effective, safe and cost effective water reuse chain?

- Lettuce, potatoes, tomotoes, growt better with TWW. No minerals deficientcy and intake of NPK and organic matter
- Salt sensitive plant (Lettuce) grow perfectly under brackish TWW (7g/L). Benefits of Treated WasteWater overcomes limiting effect of Salt (NaCl)
- No accumulation of heavy metals in plant nor soil
- No pathogen detected (to be confirmed)
- Dripp irrigation limits contamination, water losses (evapotranspiration, spillage), enable safe farming practices
- 2-3 harvests are possible in arid area, under greenhouses

- Nano filtration remove heavy metals, pathogenes and salt.
- Nano filtration can be a substitute of grownd water abstraction and limit impact on fossile ressources, non-renouvelable.
- Nano Filtrated water can be used for germination and before harvest.
- Soil characteristic improvement thanks to supply of NPK & organic matter: enhance soil fertility,
- Potential to develop Agro park, urban green landscape, sustainable water valorisation in compound.

