

ASSESSMENT OF ON-FARM VEGETABLE CROP RESPONSE TO DRIP- IRRIGATION SCHEDULING WITH SALINE WATER IN THE SOUTHERN TUNISIA

Project Funded by the

European Union (ENPI/2011/280-008

¹ F. El Mokh; ² K. Nagaz; ³ M.M. Masmoudi; ⁴ N. Ben Mechlia;
⁵ M.O. Baba Sy; ⁶ O. Belkheiri; ⁶⁻⁷ G. Ghiglieri

¹ [Engineer PhDstudentr], [Institut des Régions Arides], [Route du Jorf km22.5, 4119 Médenine, Tunisia], [fathiamokh@yahoo.frl];

² [Senior researcher], [Institut des Régions Arides], [Route du Jorf km22.5, 4119 Médenine, Tunisia], [Nagaz.Kameleddine@ira.rnrt.tn]

³ [Professor], [INAT], [43 avenue Charles Nicolle, 2083 Tunis, Tunisia], [masmoudi.med@inat.agrinet.tn]

⁴ [Professor], [INAT], [43 avenue Charles Nicolle, 2083 Tunis, Tunisia], [netij.benmechlia@iresa.agrinet.tn]

⁵ [PhD], [OSS], [Boulevard du Leader Yasser Arafat BP 31 - Tunis Carthage 1080, Tunisie], [lamine.babasy@oss.org.tn]

⁶ [PhD], [NRD], [University of Sassari, Viale Italia 39 - 07100 Sassari, Italy], [nrd@uniss.it]

⁶⁻⁷ [Professor], [University of Cagliari], [Via Trentino 51 - 09127 Cagliari, Italy], [ghiglieri@unica.it]

Speaker: Fathia ElMokh email:fathiamokh@yahoo.fr

Sustainable Water Integrated Management

(SWIM) Demonstration Project

Presentation outlines

- **1.** Introduction
- 2. Objectives
- 3. Materials and methods
- **4.** Results
 - Soil salinity
 - Crop yield
 - •Water supply and productivity
 - Economic evaluation
- 5. Conclusions

Introduction

Limited supply of good quality water is a major constraint to crop production in the Mediterranean region of Tunisia Highly use saline water to intensify agriculture

Introduction

The optimal irrigation management strategy is to maximize yield by supplying the irrigation requirement of the crop (CWR).

How to make irrigation more efficient?

- □ Irrigation methods: micro-irrigation (drip irrigation)
- □ Irrigation volume based on CWR and soil characteristics (Full irrigation)

□ Reduction in the volume (deficit irrigation) based on crop salinity and drought tolerance.

Determine irrigation water requirements of vegetable crops and assess yield response to different irrigation regimes using saline waters

Identify the best irrigation strategy that allow water saving with reduced effect on soil salinity and crop productivity under the arid Mediterranean conditions of southern Tunisia.

Field experiments

Sandy soil texture (Clay: 6.77%, Loam: 12.68% & Sand: 80.55%) having low organic manure (<0.8%)

cultivate over

Average rainfall: 153 mm/year

Climate typical of arid areas according to annual rainfall (<200 mm) and ETo (>1400

>Water source: Shallow well having an ECi of 6 dS/m

Field experiments

Vegetable crops: potato, carrot, green bean and pepper
 Irrigation system: Drip irrigation method

>Before planation, Organic manure, potassium (K_2O) and phosphate (P_2O_5) were supplied as basal doses.

➢Nitrogen was divided and delivered with the irrigation water for all treatments during early vegetative growth

Irrigation scheduling methods

Two irrigation treatments based on the use SWB to estimate irrigation amounts and timing were compared to farmer practice.

SWB methods consist in replacement of cumulated ETc when readily available water is depleted with levels of 100% (FI100) and 70% (DI70)

> Farmer method (FM) consists in giving fixed amounts of irrigation water with fixed intervals from planting till harvest.

Crop evapotranspiration ETc = Kc ETo

Reference evapotranspiration ETo: FAO-56 Penman-Monteith method (Allen et al., 1998)

Irrigation scheduling **>** SWB model

- Daily basis
- Water balance components
- Information on irrigation when RAW (% of TAW) has been depleted

6		9	~ (2 -	₫) =													Cla	isseur1	- Micro	soft Exc	el utilis	ation n	on com	mercial	e														x
	9	Accue	il In	sertion	Mise	en pag	e F	Formules	s D	onnées	Rév	ision	Affich	age																							0) _ =	X
	2	X Co	uper			Calib	ri	- 11	-	A* A*	= =	-	≫ ►	¶ -	Renv	over à la li	igne ai	utomati	quemen	t Sta	ndard		-							-	*		Σ	omme ai	utomatique	- A7	A		
c	oller	Col	pier			G	7 5	-) (III -	-) (20 -	A -						nner et c	entrer	÷		1	- %	000	,0 ,00	Mise	¤ <u>≧s</u> en forme	e Mettr	e sous f	orme St	vies de	Insérer	Supprimer	Format	💽 R	emplissa	ge *	Trier et F	Rechercher et		
	*	V Rep	oroduire se papie	a mise ei	n forme			Police						A1	lignemer	+					Nor	hre	00 ~ ,0	condit	ionnelle	r de	tableau	i* ce	llules *	*	Celluler	*	2 €	facer 🔻	Éd	filtrer * s	électionner *		
		AW	1	- (6	fx		Tonee							ingriculter						NUI	ibre				50	yic				centures				Eur	uon			2
	A	В	c	D	E	F	G	н	I.	J	к	L	м	N	0	P	0	B	S	т	U	V	W	z	Y	z	AA	AB	AC	AD	AE AF	AG	AH	AI	AJ	AK AL	AM AN	AO	Ē
1																				_	Calcul d	l'évapor	ation	:	Percolati	ion					Pilota	ge d'irri	ation						
3	Jour	ETo	Tmax	Tmin	dew(Tm	eo(Tma	eo(Tmi	Rhmin		Vent (m F	Ceb 1	Hauteur (a plant(de Kemax Z	(m)	P-RO f	e 1-f	ie Ir	let rrig./fw fv	w fi	rw s	De,i tart (m l	Kr	Ke 1	E mm/j	profond Dpe (mi	De,i end (mn I	Ke E	Tc (m 1	AW F	AW Im	igatio Dr,i in	Dose d'i it I (mm)	rrig. Ks	Ke (KsKeb+	ETc (m DF	(mn Dr (mm)		
5		1 6	,8 3	9 20 3 20	18	6,991	2,064	29,52 41.03	Semis	2,5	0,15	0,078	1,227	0,2	0	0,01	0,99	0	0,35	0,35	12,35	0	0 429	0	0	12,35	0,15	1,02	15	5,999	1 0	0 5,999 6 0	0,967	0,145	0,986	0 0,986			-
7		3 6	,7 3	20	20	6,991	2,338	33,44		2,9	0,15	0,078	1,227	0,2	Ő	0,01	0,99	0	0,35	0,35	6,617	1	0,43	2,878	0	14,84	0,58	3,883	15	5,999	0 4,08	6 0	0,967	0,575	3,85	0 7,936			
9		4 e 5 e	,7 39, ,6 38,	5 23 8 23	21	6,917	2,487	34,63		2,8	0,15	0,078	1,225	0,2	0	0,01	0,99	22,67	0,35	0,35	14,84	1	0,427	2,818	7,833	14,84 8,053	0,15	3,808	15	5,999 5,999	0 0,97	0 7,936 2 0	0,967	0,145	3,776	0 0,972			
10		6 6 7 4	,2 3 7 3	7 21 5 12	19	6,275 5,623	2,197	35,02 21.84		3,4 3,4	0,15	0,078	1,232	0,2	0	0,01	0,99	0	0,35	0,35	8,053	1	0,431	2,674	0	15,69	0,581	3,604	15	5,999 5,999	0 4,74	8 0 0 8.321	0,967	0,576	3,573	0 8,321			-11
12		8 5	,1 3	5 24	22	5,623	2,644	47,02		3,4	0,15	0,078	1,216	0,2	0	0,01	0,99	23,77	0,35	0,35	0	1	0,426	2,171	8,081	6,202	0,576	2,936	15	5,999	0 0,68	2 0	0,967	0,571	2,91	0 3,592			
13	1	10 4	,2 2	5 20,2 B 17	18,2	3,780	1,705	45,12		2,7	0,15	0,078	1,22	0,2	0	0,01	0,99	0	0,35	0,35	13,15	0	0,427	2,454	0	13,15	0,577	0,63	15	5,999	1 (0 6,852	0,967	0,372	0,609	0 0,609			-
15 16		11 4 12 4	,8 3. .5 30.	2 20 5 19.5	18	4,755	2,064	43,41 45.81		1,7	0,15	0,078	1,198	0,2	0	0,01	0,99	19,58 0	0,35	0,35	5.751	1	0,419	2,013	6,424 0	5,751 11.22	0,569	2,733	15	5,999 5,999	0 0,609	90 80	0,967	0,564	2,709	0 3,318			- 1
17	1	13 5	,1 3	2 18	16	4,755	1,818	38,24		3,4	0,15	0,078	1,228	0,2	0	0,01	0,99	0	0,35	0,35	11,22	0,338	0,364	1,857	0	16,52	0,514	2,622	15	5,999	0 5,88	5 0	0,967	0,509	2,597	0 8,481			
19	i	15 6	,3 3	9 23	21	6,991	2,004	35,57		3,7	0,15	0,078	1,235	0,2	ŏ	0,01	0,99	24,23	0,35	0,35	0	1	0,432	2,724	7,708	7,783	0,582	3,669	15	5,999	0 0,69	6 0	0,967	0,577	3,638	0 4,334			
20 21		16 17 5	5 3 ,5 3	8 15,5 5 20	13,5	6,625 5,623	2,064	23,36 36,71		3,8	0,15	0,078	1,253	0,2	0	0,01 0,01	0,99	0	0,35	0,35	7,783	0	0,439	2,193	0	14,05	0,589	2,943	15	5,999 5,999	0 4,334	4 0 0 7,252	0,967	0,584 0,145	2,918 0,798	0 7,252			
22	1	18 4	,4 3	2 21,8	19,8	4,755	2,309	48,57		2,4	0,15	0,078	1,201	0,2	0	0,01	0,99	20,72	0,35	0,35	0 5 283	1	0,42	1,849	6,672	5,283	0,57	2,509	15	5,999 5,999	0 0,79	8 0 5 0	0,967	0,565	2,487	0 3,285			
24		20 5	,6 3	5 21	19	5,941	2,197	36,99		5,7	0,15	0,078	1,26	0,2	0	0,01	0,99	0	0,35	0,35	11,7	0,195	0,217	1,214	0	15,16	0,367	2,054	15	5,999	1 (0 6,298	0,967	0,362	2,026	0 2,026			
25 26		21 3 22 4	,4 35, ,4 3	2 20 1 19	18	5,685 4,493	1,938	43,13		4,3	0,15	0,078	1,226	0,2	0	0,01	0,99 0,99	18	0,35	0,35	6,622	1	0,429	1,899	2,831	6,622	0,579	2,559	15	5,999 5,999	0 2,020	6 0 7 0	0,967	0,574	2,537	0 5,127			
27		23 4 24 4	,5 3. .3 3	5 15,3 2 21	13,3 19	5,623 4,755	1,527	27,17 46.21		3,3 3,2	0,15	0,078	1,241	0,2	0	0,01	0,99	0 21.9	0,35	0,35	12,05	0,09	0,098	0,442	0 8.588	13,31 5.222	0,248	1,117	15	5,999 5,999	1 (0 7,664 5 0	0,967	0,243	1,095	0 1,095			
29		25 3	,6 2	8 18,5	16,5	3,780	1,877	49,66	F,ini-Dé	3,7	0,15	0,078	1,216	0,2	0	0,01	0,99	0	0,35	0,35	5,222	1	0,426	1,533	0	9,601	0,576	2,073	15	5,999	0 3,54	6 0	0,967	0,571	2,055	0 5,601			
30 31	1	26 4 27 4	,8 3	5 20 3 19	18	5,030	1,938	35,71		3,7	0,184	0,095	1,257	0,215	0	0,026 0	,974 ,947	0	0,35	0,35	9,601	0,82	0,435	1,906	0	15,05	0,817	1,042	16	6,799	1 (0 8,288	0,967	0,611	1,008	0 8,288			
32	1	28 4 29 4	,2 3	2 21 4 20.5	19	4,755	2,197	46,21 40.04		3,3	0,251 0.284	0,13	1,218	0,24	0	0,081 0	,919 .892	23,68	0,35	0,35	5.117	1	0,426	1,791 2.051	8,633 0	5,117 10.98	0,677	2,844	18 19	7,199	0 1,00	8 0 7 0	0,967	0,669	2,809	0 3,817			-
34		30 4	,4 3	3 21	19	5,030	2,197	43,68		2,3	0,318	0,165	1,207	0,267	0	0,136 0	,864	0	0,35	0,35	10,98	0,41	0,364	1,603	0	15,56	0,682	3,001	20	7,998	0 7,18	7 0	0,967	0,672	2,955	0 10,14			2
35		32	5 33,	5 15	15	5,108	1,498	30,90		3,5	0,331	0,182	1,222	0,28	0	0,181 0	,816	28,98	0,35	0,35	15,56	1	0,435	2,175	13,42	6,214	0,831	4,099	21	8,798	0 1,12	1 0	0,967	0,34	4,036	0 5,157			
37		33 4 34 3	,5 3 .7 3	1 16 2 19	14	4,493	1,599	35,58 40,75		2,6	0,418	0,217	1,228	0,307	0	0,214 0	,786 .761	0	0,35	0,35	6,214 11.74	1 0.182	0,43	1,934	0	11,74 13.25	0,848	3,817	23 24	9,198 9,598	0 5,15	7 0 2 0	0,967	0,834	3,755	0 8,912			
39		35	5 38,	5 20	18	6,806	2,064	30,33		3,8	0,486	0,252	1,262	0,333	0	0,259 0	,741	0	0,35	0,35	13,25	0	0 42	0	0	13,25	0,486	2,428	25	9,998	1 (0 11,06	0,967	0,47	2,348	0 2,348			
40	3	37 4	,3 3	2 22,5 5 16	20,5	5,623	1,599	28,43		4,6	0,519	0,289	1,228	0,347	0	0,306 0	,694	0	0,35	0,35	5,034	1	0,45	1,933	18,54	10,56	1,002	4,309	26,99	10,4	0 6,16	8 0	0,967	0,932	4,231	0 0,108			
42 43	1	38 39 3	4 3	2 12 0 14	10	4,755	1,228	25,83 33.06		3 5.1	0,586	0,304 0.321	1,259	0,373	0	0,341 0	,659 .642	0	0,35	0,35	10,56	0,536	0,36	1,441	0	14,67 14.67	0,946	3,786	27,99 28,99	11,2 11.6	0 10,4	4 0 0 14.11	0,967	0,927	3,708	0 14,11 0 2.158			-
44	4	40 3	,5 31,	5 14,5	12,5	4,622	1,449	31,36		3,2	0,653	0,339	1,253	0,4	0	0,399 0	,601	40,31	0,35	0,35	0	1	0,439	1,535	25,63	4,387	1,092	3,822	29,99	12	0 2,15	8 0	0,967	1,07	3,747	0 5,904			
45	-	42 3	,7 28,	1 16	15,5	3,802	1,527	42,05		3,5	0,887	0,336	1,249	0,415	0	0,466 0	,534	0	0,35	0,35	4,587 8,632	1	0,437	1,480	0	13,21	1,124	4,267	31,99	12,4	0 9,649	9 0	0,967	1,101	4,179	0 9,649			
47 48	4	43 3 44 3	,6 2 1 28	8 15 1 15.2	13	3,780	1,498	39,62 39,91		3,7	0,754	0,391	1,249	0,44	0	0,489 0	,511 469	0 39.51	0,35	0,35	13,21	0	0.43	0	26.3	13,21	0,754	2,715	32,99 33.99	13,2	0 2.62	0 13,83 5 0	0,967	0,729	2,625	0 2,625			-
49	4	45 3	,5 28,	1 16,8	14,8	3,802	1,684	44,28		2,9	0,821	0,426	1,222	0,467	0	0,567 0	,433	0	0,35	0,35	3,809	1	0,4	1,402	0	7,814	1,222	4,276	34,99	14	0 6,319	9 0	0,967	1,195	4,181	0 10,5			
50 51		46 3 47	,8 29, 4 31,	5 16	14	4,123	1,599	38,77		2,1	0,855	0,443	1,216	0,48	0	0,603 0	,368	0	0,35	0,35	11,74	0,182	0,362	0,244	0	11,74	0,949	4,622 3,797	36,99	14,4	1 (5 0 0 15,01	0,967	0,92	4,515	0 15,01			
52 53	4	48 4 49 4	,4 29,	5 17	15 14	4,123	1,705	41,36		3,9 3,4	0,922	0,478	1,252	0,507	0	0,643 0	,357 .322	42,9 0	0,35	0,35	0 4.153	1	0,33	1,453	30,46 0	4,153	1,252	5,51 5,124	37,99 38.99	15,2 15.6	0 3,61	8 0 5 0	0,967	1,222	5,376 4,994	0 9,055			
54	-	50 3	,8 2	8 14	12	3,780	1,403	37,11		3,1	0,989	0,513	1,244	0,533	0	0,716 0	,284	0	0,35	0,284	7,9	1	0,256	0,971	Ő	11,32	1,244	4,729	39,99	16	0 14,0	5 0	0,967	1,212	4,605	0 18,66			
55 56		52 3	,4 23, ,8 21,	+ 11,9 8 8,3	6,3	2,878	0,955	42,38		3,6	1,023	0,53	1,244	0,547	0	0,751 0	,249 0,22	53,3	0,35	0,249	11,32	0,308	0,068	0,232	41,05	3,372	1,091	4,756	40,99	16,8	0 3,594	0 18,66 4 0	0,967	1,057	4,623	0 3,594			
57		53	3 19,	7,8	5,8	2,324	0,922	39,69		3,5	1,09	0,565	1,249	0,573	0	0,818 0	,182	0	0,35	0,182	3,372	1	0,16	0,479	0	5,999	1,249	3,748	42,99	17,2	0 8,21	7 0	0,967	1,213	3,64	0 11,86			
Pn	êt	Fe	uni / Fi		reuil3 🖉	C																									_					町 50 %		· · · ·	l (†
-(» :::		ww.ma	il.tn - G	000	5 0) Ministé	ère de l	En	🔊 PH	οτος			Do	cument	3 - Mici	0	📄 be	doui fie	-Id 2014		Г м	icrosoft	PowerP	oi	BÌ Pil	nomme d	e terre 1		lasseur			FR .		a (t) 16	-33

Measured parameters

- Soil salinity
- Crop Yield
- Water supply and productivity

WP (kg/m³) = Yield (kg/ha) / irrigation water (m³/ha)

Economic evaluation

Ε

EC Economic evaluation

Treatment	Production costs(\$)	Gross return(\$)	Net income(\$)			
	FI10)0				
Potato	3634	9411	5777			
Green bean	4292	6510	2217			
Carrot	2987	7309	4322			
Pepper	5604	27625	22020			
	DI7	0				
Potato	3576	7867	4290			
Green bean	4242	6006	1764			
Carrot	2912	6326	3414			
Pepper	5485	24312	18827			
	FM	1				
Potato	3667	6062	2394			
Green bean	4337	5366	1028			
Carrot	3036	5555	2519			
Pepper	5665	15676	10010			

Conclusions

SWB scheduling technique (FI100) provides the highest yield and net income with more water saving compared to FM.

□ Deficit irrigation (DI70) reduced vegetable yields that caused net profit decrease. However, this strategy allowed to improve IWP with 30% water saving and small impact on soil salinization compared to full irrigation strategy.

□ FM caused yield reduction as results of soil salinity increase

□ FI scheduling technique based on SWB recommended for irrigation of vegetable crops

Implementation of demonstration pilot on farm field assisted farmers to evaluate their local irrigation practices and selected the most useful irrigation strategy through their continuous interaction during the experimental period.

Acknowledgments

Thank you for your attention

- WADIS-MAR project (ENPI/2011/280-008)
- Research Agreement Program (LR11IRA02)

