
Impact of deficit irrigation on yield and fruit quality in orange (Citrus Sinensis L. Osbeck, cv. Meski Maltaise) in Southern

Project Funded by the

European Union (ENPI/2011/280-008

¹K. Nagaz; ²F. El Mokh; ³N. Ben Hassen; ⁴M.M. Masmoudi; ⁵N. Ben Mechlia; ⁶M.O. Baba Sy; ⁷O. Belkheiri; ⁷⁻⁸G. Ghiglieri

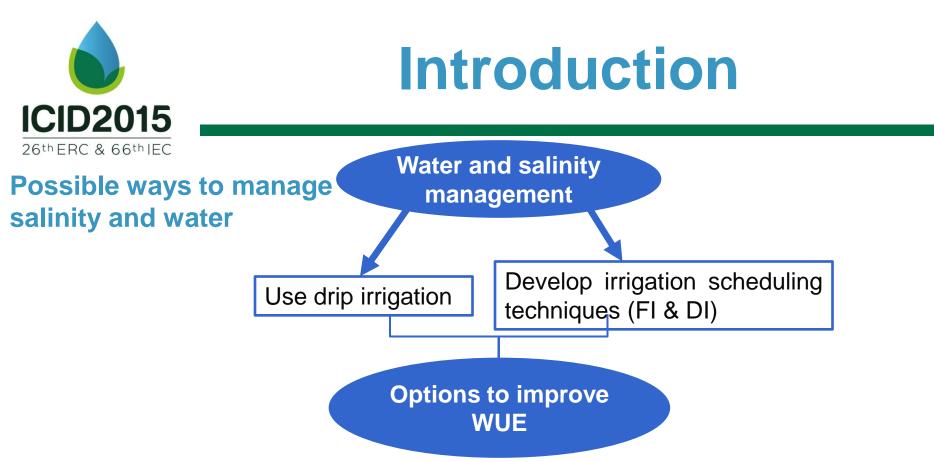
[1] [Senior researcher], [Institut des Régions Arides], [4119 Médenine, Tunisia], [Nagaz.Kameleddine@ira.rnrt.tn] [2] [Engineer PhD student], [Institut des Régions Arides], [4119 Médenine, Tunisia], [fathiamokh@yahoo.fr] [3] [PhD student], [Institut des Régions Arides], [4119 Médenine, Tunisia], [nadiabenhassen1@hotmail.fr] [4] [Professor], [INAT], [43 avenue Charles Nicolle, 2083 Tunis, Tunisia], [masmoudi.med@inat.agrinet.tn] [5] [Professor], [INAT], [43 avenue Charles Nicolle, 2083 Tunis, Tunisia], [netij.benmechlia@iresa.agrinet.tn] [6] [PhD], [OSS], [Boulevard du Leader Yasser Arafat BP 31 - Tunis Carthage 1080, Tunisie], [lamine.babasy@oss.org.tn] [11] [PhD], [NRD], [University of Sassari, Viale Italia 39 - 07100 Sassari, Italy], [nrd@uniss.it] [7-8] [Professor], [University of Cagliari], [Via Trentino 51 - 09127] Cagliari, Italy], [ghiglieri@unica.it] WORKSHOP : PRECISION IRRIGATION FOR SUSTAINABLE CROP PRODUCTION (WG CROP ws)

and the state

Sustainable Water Integrated Management

Tunisia

(SWIM) Demonstration Project


Presentation outlines

- 1. Introduction
- 2. Objectives
- 3. Materials and methods
- 4. Results
 - Soil salinity
 - Soil water depletion
 - Yield & fruit quality
 - Water productivity
 - Net income
- 5. Conclusions

Introduction

- Arid regions of Tunisia (Long-term rainfall average ≤ 150 mm and annual ETo
- > 1400 mm)
 Limited supplies of quality water for irrigation
 Increasing needs for the intensification of agriculture
- Irrigation of horticulture crops around wells having TDS \geq 1.5 g/l
- Irrigation scheduled according to farmers experiences & without provision drainage
- Irrigated lands: lack of drainage systems and accumulation of salts in the root zone compromising the sustainability of irrigated farming.
- Better management of water application to improve farmers practices, water productivity and reduce the risk of soil salinization

- Efficiency of drip irrigation not used properly (Farmers tend to over irrigate)
- Irrigation scheduling based on CWR and soil characteristics
- -Development of irrigation: Overexploited groundwater resources DI continuously/regulated

Introduction

- Management options DI instead of FI
- DI Adoption: long term impact on water use, crop yield and soil salinization
- DI particularly important for orchards which represent an important component of the productive farming system in the irrigated lands.
- Productivity low and irrigation with saline waters practiced without provision of drainage.
- Chronic water shortage and soil degradation hazards in irrigated orchards: need to develop strategies to save water and control salinity
- Absence of drainage systems, high evaporative demand conditions & chronic shortages of water, techniques based on irrigation restrictions reasonably appropriate
- Farmers must have prior knowledge of the crop yield responses to DI

- Assess the response of orange trees to irrigation strategies in order to define the best irrigation programme based on deficit irrigation with saline water of orange adapted to the arid conditions of Tunisia

- Supply producers with information with regard to irrigation scheduling and deficit irrigation guides and Reinforce their capacities to face the problem of water scarcity

Field experiments

- -Two years (2013-2014) in farmer field Megarine (33°19'N, 10° 27' E), Médenine, Southern Tunisia
- Experiment in a drip irrigated orchards of Meski Maltaise, early orange cultivar

Megarine, Medenine

- Farm size of 55 ha
- Average rainfall less than 150 mm/year
- Water source: Well with flow rate of 8 l/s & depth less than 50 m

- Sandy loam soil texture (Clay: 9%, Loam: 29% & Sand: 62%) having low OM (<0.3%) SWC at FC and PWP of 0.17 \pm 0.02 and 0.092 \pm 0.03 m³.m⁻³; and a bulk density of 1.41 \pm 0.02 g.cm⁻³.

The trees were planted in 2001 on sandy loam soil with a density of 238 trees/ha using Bigaradier rootstocks (12 years-old 'Meski Maltaise trees grafted on Bigaradier with tree spacing of 7x6 m), average height of the trees was 3.25 m, with a canopy diameter of 4.0 m.

Irrigation waters TDS of 1.5 g/l

Four drip emitters per tree (4 l/h) connected to a dual drip line, two per side of the tree, 1 m apart, are used in the experiment

• Irrigation treatments

- Full treatment (FI) at 100% ETc in which the trees were irrigated during the watering season to provide them with their full water requirement based on ETc calculations.

- Deficit treatments irrigated with irrigation water quantities that cover 75 and 50% of ETc (DI75 and DI50).

- FM irrigated according to farmer irrigation practice

• FM, DI & FI implemented during the active period of orange corresponding to different phenological stages (flowering and initial fruit set, fruit growth and maturity) and post-harvest

• Each treatment-block: 16 trees, in which the middle four used for experimental measurements

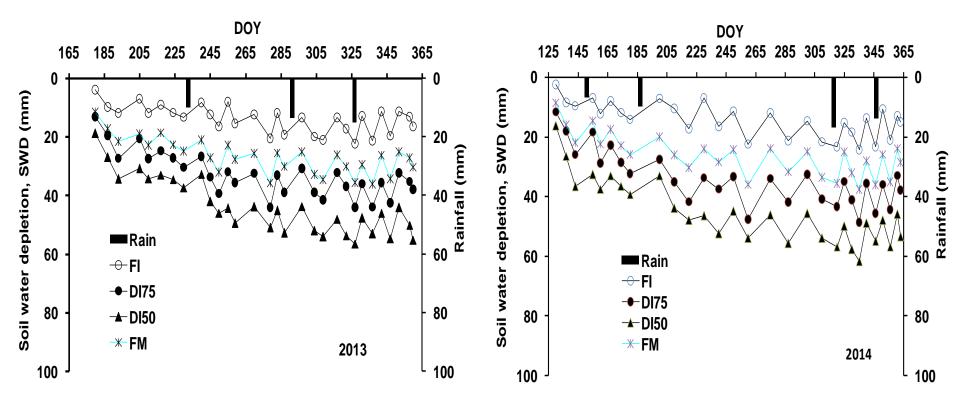
Supply of fertilizers

- Nutrient supply was applied according to farmer practices (200-100-150 kg/ha of N, P_2O_5 and K_2O , respectively)

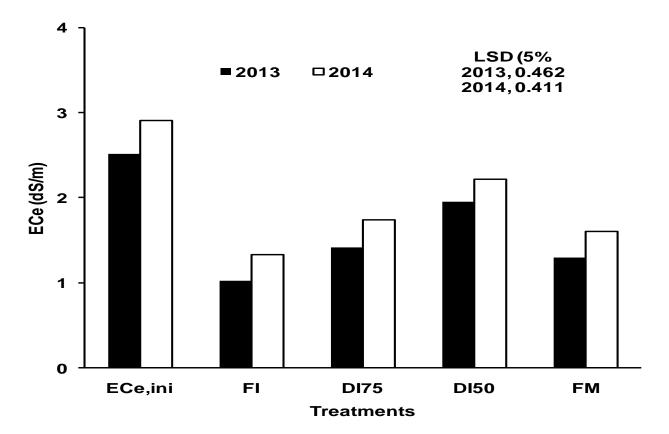
- Rate of 2/3 during the period April-May, no fertilizer supplies during June to August and the 1/3 was applied during September.

WATER AND IRRIGATION REQUIREMENTS

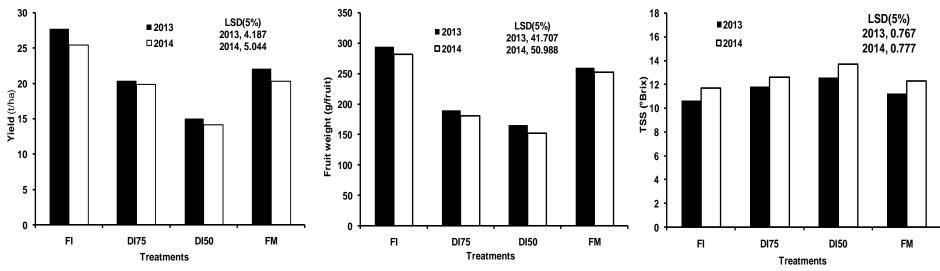
	26	thE	RC	& 6	66th	IEC			v v <i>r</i>		_1\/			VIC								0												
0.	1 🖬 🤊	- 6-	nsertion									De	ficit-Irrigat	tion-Ap	plication Agr	umes [Mode de	e compa	tibilité]	- Micros	soft Excel	l –											- 1	a ×
	Accue	eil li	nsertion	Mise en	n page	Formules	Don	nées	Révision Affich	age	Easy Docur	nent Creat	or																				0	- = ×
Colle	I Rej	pier	la mise en t		Arial G I	- 8 <u>S</u> - 0			= <mark>=</mark> (>) = = = (≠ (≠	•a	Renvoyer			ent St	andard	* 1 400 N	Aise en forr inditionnel	me Mettre Ie≁ de	sous forr	Norm ne Satis			isfaisan tisseme			* *	*	Supprimer	Format	∑ Somm Remp ∠ Efface	lissage 👻	ZI Trier	r et Reche er ▼ sélecti	
		vertissement de sécurité Les marcos ont été désativées. Options																																
<u> </u>																																		
	BL38	-	• (•	fx	_		-							~		-		-						-										*
1	A	В	С	D	E	F	G	Н	I J	K	L	М			P Q ROP : Fruit trees	R	S		U	V	W	Х	Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ
2								Ap	plication develope	d by						dev	mid	late	total															
3									WM Team					Ko	c 0,7		0,65	0,7																
4 5									INAT-IRA, TUNISIA					1.0	ength 20	70	90	20	210															
6								How to	use this application '	?					ini. St. 1		30	- 30	210															
7															. ini. st. 25																			
	attitude	Médeni	ine 36,83						Precipitation	59,0					0. Ini. Si 25 . cum. 20	90	180	210	20															
	altitude		15						Full Irrigation	940,8				Ko					0,7															
11									Deficit Irrigation	699,9					Restricti			- 11	- 10															
12															0,25																			
13 14	Year	Month	Day	Tn	Tx	Tm	BHn	BHx	RHm U2	SS	Rad	ETo	TenDays Ten	Dave	JuDav D	Кс	ETo	ETc	ETd	ETcC		PC	ET ₀ C	ETcC	ETdC	P	AIRR	Reserve		D-FI	AIRR	Reserve		D-DI
15	rear	Montar	Day	*C	•C	°C	%	%	% m/s	h	cal/cm²	mm	renoaya ren	iDays 5	Jubay D	NC	mm	mm	mm	LICO		mm	mm	mm	mm	mm	7.1111	Keserve		mm	73.0313	TK636TV6		mm
16						2									0					0		0	0	0	0				0				0	
17	2014	1	5	9,0	17,1	13,1	72,0	78,0		2,4		16,8			5,0 345,0	0,70	16,8	11,8	8,8			0,0	16,8	11,8	8,8	0,0	0				(-8,8	8,8
18 19	2014 2014	1	15 25	4,7 10,4	15,3 20,8	10,0 15,6	80,0 71,0	87,0 87,0		3,0 4,8		16,9 21,8			15,0 355,0 25,0 0,0	0,70 0,70	16,9 21,8	11,8 15,3	8,9 11.4	23,6 15,3		0,0 0,0	33,7 55,5	23,6 38,9	17,7 29,1	0,0 0,0	0			5 11,8 9 15,3	() -8,9) -11,4	-17,7 -29,1	8,9
20	2014	2	5	12,0	20,6	16,3	72,0	86,0		4,5		21,9			36,0 11,0	0,70	21,0	15,3	11,5			0,0	77,4	54,2	40,6	0,0	c				0			
21	2014	2	15	8,0	16,0	12,0	72,0	84,0		2,3		25,5	F2		46,0 21,0	0,70	25,5	17,8	13,4	48,4		0,0	102,9	72,0	54,0	0,0	C	-17,8	-72,0	17,8	(-54,0	13,4
22	2014	2	25	6,1	13,0	9,6	70,0	93,0		3,2		20,6			56,0 31,0	0,69	20,6	14,3		62,7		0,0	123,5	86,3	64,7	0,0	0			3 14,3	(
23 24	2014 2014	3	5	8,1 9,9	18,2 20.0	13,2	66,0 60,0	90,0 88,0		6,4 8,1		28,2 30,2			64,0 39,0 74,0 49,0	0,69	28,2 30,2	19,4 20,5		82,0 102.6		0,0 0,0	151,7 181,9	105,6 126,1	79,2 94,6	0,0 0.0	0			5 19,4 1 20,5	(-79,2 -94,6	
25	2014	3	25	9,7	17,2	13,5	55,0	81,0		6,6		40,7			74,0 49,0 84,0 59,0	0,67	40,7	20,5		129,9		0,0	222,6	153,5	115,1	0,0	0			5 27,4	(-115,1	
26	2014	4	5	9,4	19,5	14,5	59,0	84,0		7,5		44.0		40	05.0 70.0	0.00	110	07.4	20,6	157.3		0.0	263.9	180.9	135.7	0.0	ſ	-27,4		27,4	(-20,6	-135,7	
27 28	2014	4	15	9,6	18,6	14,1	70,0	83,0		4,8	90 l.	·····)		Water r	equirements				20,5	80	()	Irri	gation re	quiremen	its			-27,3		3 27,3	0		-156,2	
28	2014 2014	4	25 5	9,5 10,9	19,5 21,2	14,5	58,0 52,0	87,0 85.0		7,6 6,5	80 -	mm)			٨				21,1 23,2	80 -	(mm)) -28,1) -23,9		4 28,1 3 23,9	(-177,3 -193,5	
30	2014	5	15	12,3	22,8	17,6	42,0	84,0		10,5	70 -				\sim				25,2	60 -								-34,3		5 23,5 5 34,3	0		-219,2	
31	2014	5	25	13,4	27,6	20,5	36,0	79,0		9,9	60 - 50 -			\sim					29,8									-24,8		4 24,8	(-234,0	
32	2014	6	5	17,8	29,8	23,8	39,0	85,0		9,2	40 -		\checkmark	~	\sim				27,9	40 -				┉∕ो	$\mathbf{\Lambda}$			-37,2		37,2	0		-262,0	
33 34	2014 2014	6	15 25	18,0 18,7	30,5 32,0	24,3 25,4	46,0 42.0	76,0 75.0		7,9 11,4	30 -			\sim	~~~	\sim	\[28,1 30,1				\mathcal{N}		\sim) -37,5) -40,1		1 37,5 2 40,1	(-290,1 -320,2	
35	2014	7	5	17,9	31,0	24,5	42,0 47,0	72,0		10,6	20 -	\sim					\sim		31,8	20 -	~	(\mathcal{N}		<u> </u>	and the	•	-42,4		6 42,4	0		-352,0	
36	2014	7	15	20,8	33,7	27,3	79,0	71,0		11,9	10 - =	<u>~~</u> `							31,0				• 7					-41,3		9 41,3	(-382,9	
37	2014	7	25	21,9	34,8	28,4	36,0	65,0		10,6	0+		44 64 244	 44				- I	38,0	0 🕂		, ., , . ,,			• • • • • • • •	,	u <mark>¥r∎n</mark> >u	-50,6		5 50,6	0		-420,9	
38 39	2014 2014	8	5 15	22,0 19,9	36,3 31,1	29,2 25,5	47,0 37,0	81,0 68,0		10,9 10,1	J1	F1 I		1 31		01	V1 D1 ETd		32,6 32,9	J1	F1 M1			JL1 A1		1 N1	D1) -43,5) -43,8) 43,5 3 43,8	(-453,5 -486,4	
40	2014	8	25	20,6	31,8	26,2	37,0 47,0	77,0		9,1			— ETc		ET0		LIU		32,9 35,8		• P	·	-D-FI		D-DI				-703,6				-460,4	
41	2014	q	Feuil2	19.4 Feuil2	28.8	23.E	0.03	. PR	2	85		52 Q	Q1 (25 3	248.0 223.0	0 70	52.8	37.0	27.7	728.0		22 N	11/3 1	762.5	571 0	0.0		-37.0		37.0	0	-277	-540.0	977
Prêt		cauale	a round	(TOUID	/ C#/																									Æ		110% 😑		(+)
_																																		


🗄 🚞 🌌 🌌 🧿 S 🜌 🖉 💽

- Farmer provided by simple irrigation chart and asked to use it for the first thee treatments while continuing to use his traditional irrigation practice.
- Irrigation chart: information's on irrigation timing and the volume of water (I/tree) per week
- Irrigation scheduling: Irrigation treatments scheduled weekly
- Field monitoring :
- Soil water content and salinity
- Yield, fruit size, total soluble solids TSS (°Brix)
- Amount of irrigation water saving
- Water productivity
 - WP (kg/m³) = Yield (kg/ha) / irrigation water (m³/ha)
- Net income for each treatment was computed by subtracting all the production costs from gross incomes.



Soil water depletion under different irrigation treatments



Soil salinity (ECe, dS/m) under different irrigation treatments

Yield and fruit quality under irrigation strategies for the study period

Yield and fruit-quality: Overall monitoring period 2013-2014

	Yield (t/ha)	Fruit weight (g/fruit)	TTS (°Brix)	Fruit number (Fruit/tree)
FI	26.64	288.2	11.20	264.3
DI75	20.11	185.5	12.25	192.5
DI50	14.65	159.0	13.15	153.6
FM	21.24	256.4	11.75	205. 5
LSD (5%)	4.211	24.870	0.780	3.03

Irrigation supplies, water saving and productivity (kg/m³) under different strategies

Treatments	Irrigatior	ı (mm)	Water sav	ving (m³/ha)	IWP (kg/m ³)				
	2013	2014	2013	2014	2013	2014			
FI	711	704	-	-	3.60	3.51			
DI75	530	522	1810	1820	3.87	3.77			
DI50	349	341	3620	3540	4.31	4.06			
FM	654	607	578	960	3.48	3.44			
LSD (5%)	-	-	-	-	0.413	0.281			

Production costs and net return of orange production under different irrigation treatments (US\$ ha⁻¹) (average of 2 years)

	Production costs (\$)	Gross return (\$)	Net financial return (\$)				
FI	5190.8	11824.1	6633.3				
DI75	4935.5	8874.8	3939.0				
DI50	4680.7	6488.4	1807.7				
FM	5085.2	9427.4	4342.2				
	14000 - 12000 - 10000 - 6000 - 4000 - 2000 - 0	 Production costs Gross returns Net incomes 					
	FI	DI75 DI50	FM				
		Treatments					

Conclusions

- Highest soil salinity values were observed under DI50 compared to FI. DI75 and FM strategies reduced the build-up of salinity compared to DI50.

- Irrigation strategy adopted by farmer (FM) resulted in using 8-13.7% less water than FI in orange orchards indicating that farmer practices DI.

- Additional savings of irrigation water achieved when deficit irrigation was applied using 25% less water than that in FI, with 21-26% reduction in orange yield.

- No significant differences in yield between DI75 and FM treatments even though numerically lower yield was observed in the former (DI75) as compared to the latter (FM) with 14-19% less irrigation water than FM used in DI75.

- A further reduction of irrigation water (DI50) caused lower orange yield with a reduction in size and weight.

- IWP under deficit treatments, DI75 or DI50, was comparatively higher than FI treatment.

- DI50 significantly reduced the economic return compared to FI treatment. DI75 resulted in a better economic return.

Conclusions

Climatic conditions in arid areas of Tunisia

• Available water for irrigated land the most limiting factor Force farmers to improve water-use efficiency to maintain profitable crop yields with less water.

Application of deficit irrigation (DI with Water restriction of 25%) Promising irrigation strategy for optimizing irrigation and increasing water productivity for orange orchards, with relatively small impact on soil salinity and some yield and net income reductions.

• DI potential way to improve WP and control soil salinization: Benefit from the leaching capacity of rains.

Investigation: Evaluate the efficiency of the small amounts of rain (fall-winter periods) for natural leaching

Conducting experiments within farm & with farmer's participation

Facilitate the extension as the results are fully accessible to the local farmers

Dissemination of experimental results

Thank you for your attention

Acknowledgements:

WADIS-MAR project (ENPI/2011/280-008)

Research Agreement Program (LR11IRA02)

