DRIP IRRIGATION AS AN EFFICIENT WATER SAVING PRACTICE

FB Reinders, ARC- Institute for Agricultural Engineering GR Backeberg, Water Research Commission, South Africa

DRIP IRRIGATION AS AN EFFICIENT WATER SAVING PRACTICE

FB Reinders, ARC- Institute for Agricultural Engineering, reindersf@arc.agric.za GR Backeberg, Water Research Commission, gerhardb@wrc.org.za South Africa

Introduction

Drip trajetion is considered as one of the most efficient intgation systems but it should be management and maintained properly to keep 1 to perform at its best to enhance crop growth and water productivity.

Performance being of offered types and ages of dispers under offerent rater qually sorottons. under hydracharming conditions was carried out

Applying's Drip In Regular and April to Pressure Compensated and Natallinia Rain Pressure Compensated drippers were selected, as they were the next commonly used drippers for surface drip in North Wisa.

Agriptos Dilprin Regular

Aprilly Pressure Compression

Name Presidence Commenced and

Research was carried out by the AFC institute to Agricultural Registering (AFC IAR), Study AFC as done dop in gather according to the professional of the below that all degrees. Notable that services are the same according to the same dispers, which contributes another on a literatury and it. was complemented by teating of installed dripping under to ving conditions.

Laboratory teather of disposes

Laboratory tests on drippers

The new sity lines with emiliens were leaded to the substancy for everage studies $p\in \overline{p}$) , and for the nerofations coefficient of decharge variation (CVs).

$$\begin{split} \widetilde{q} &= \frac{1}{n} \sum_{i=1}^{n} q_i \\ S_q &= \left[\frac{1}{n-1} \sum_{i=1}^{n} (q_i - \widetilde{q})^{\frac{1}{n}} \right] \\ CV_q &= \frac{S_q}{n} \times 100 \end{split}$$

matter deathergo sale (4%).

marker of entires of the sample.

near of all the consumed discharge rates (19);
 simularities of the discharge rate of the matter, and CVL;
 surfaces of nations of discharge rate of the matters (N).

15	Oriena for CVq	HEWFMITTE	1697	4	
Clexifodion	ASAE 32 405,1 (1997)	Chesiforine -		Dryson	America
Exades	- 6	linadist -	-	154	-
Avenge	1-7	Good	Super Typhoon	2.1	1.2
Marginal	7-11	Pair	Drip-In-Light	4.2	12
Poor	11-15	Marginal	9an 1%	3.7	1,6
Unacceptable	145	Poor .	DISPOUN	4.4	1.8

Field evaluation of drip systems

A complete system englishes was done according to the procedure described in ASAE 69° 438 (1387) where the disjoint time were explained at the positions. Apart from the land CVII, the statistical discharge uniformly (big) were also calculated as alreed as equalities.

Where U. . Statistical uniformity of smitter discharge rate (%).

A Discretion of 60% or higher to normally considered as an acceptable orders (ABAR 60° 458, 1207).

The first enrison settlemity (RLI) was any used to judge the uniformly of emitter discharges within an trigation block and is shown as equation.

$$200^{\circ}=100\,\frac{Q_{\rm crit}}{2}$$

Where \$17 + fact entrance uniformly (%)
\$ nor + theorems man of trees N of entitle discharge (M) and

(* Measured mean emilier charterine (III).

Comparison between U. and RC for design purposes (ASACESF 438, 1987)						
Continue	100	80				
Eurimi	HT - 1000	N - 100				
D006	M-90:	EL - 37				
Americalia	11-10	66 - 75				
Pear	41.75	56 - 42				
Conceptativ.	- 00	<30				

Sin	NL.	9	150	Q,	_	4.	۹.,	FY N
hoos	90.9	68,1	00,0	8.1	103	1.0	17.1	28
Service.	81.3	09.0	80.0	10.2	8.0	1.5	106	TH
thread.	81,8	88.0	85,1	10.9	1/8	1.8	1,6	40
Bered	81,6	61.6	67.2	42.8	2.9	0	1,8	290

Conclusion

In the laboratory the new regular entities, average coefficient of raciditin (CDI) was an excellent 2,2% and the pressure compensated entitlest everage CVI) ness a good 3.2%.

With the farm site evaluations the coefficient (CV) varied from a marginal 8,7% to a poor 62,6%. The emission uniformity (FLSs) varied from a good 60,7% to an unacceptable 61,8%.

If the integration explains are management and maintained properly to lease this perform at its lead to enhance only growth and order productivity it is considered as one of the resal efficient regulars.

P.B. Remours, S. Strové, N. Senadé, I van der Strep, A.S. van Metert. Technical aspects and cost estimating procedures of surface and subsurface only hitgation systems. Water Research Commission, 2012, WRC Report No. 11525/12, 1889: No. 979-1-0912-0274-0.

Advantages of drip

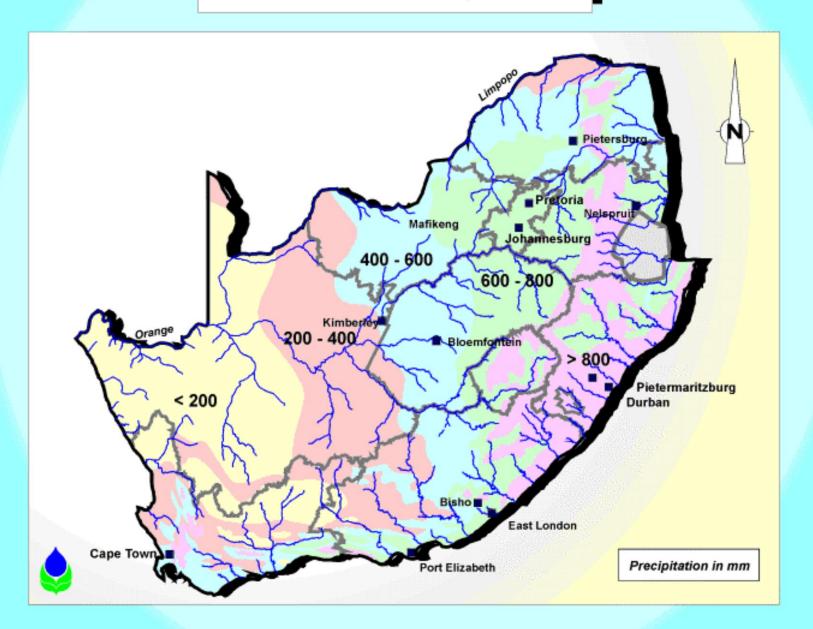
- Sophisticated technology
- Maximum production per mega litre of water
- Increased crop yields and profits
- Improved quality of production
- Less fertilizer and weed control costs
- Environmentally responsible, with reduced leaching and run-off
- Labour saving
- Application of small amounts of water more frequent

Bad news

- "Precisely the same amount of water can be wasted with drip irrigation as with the other systems, if it is not managed correctly."
- "There are many questions to answer and much information to gather before choosing a system otherwise it could lose your money".
- •"Many farmers still believe that they have water to spare, then an irrigation system is a must and that it will automatically profits – nothing could be further from the truth."

Disadvantages of drip

- Clogging
- Root intrusion
- Limited beneficial use of rain
- High investment cost
- Soil dependent


Looking from a performance perspective!

Background

- South Africa is a dry country.
- Many farmers invest in drip.
- Currently 150 000 ha surface drip and 10 000 ha sub-surface drip in South Africa out of a total of 1 500 000 ha.
- Proof in literature that drip can be in-efficient.

Mean Annual Precipitation

Understanding the operational principles of drip irrigation

Surface drip

The performance of different types and ages of drippers under different water quality conditions under typical farming conditions.

By investigating the following...

- Water quality
- Water treatment methods
- Inherent factors
- Filtration
- System maintenance
- Design

Water quality

- Physical
- Chemical
- Biological
- Fertilizers
- Oils and lubricants

Emitter type

- Discharge versus pressure
- Flow path type
- Manufacturing uniformity
- Discharge versus temperature
- Friction losses
- Sensitivity to clogging
- Root intrusion
- Other factors

Filtering

- Pre-filtering
- Filter types
- Selection of filter type
- Selection of filter size
- Maintenance schedule

System maintenance

- Flushing of system
- Flushing of laterals
- Evaluation of the dripper discharge
- Cleaning of drippers

Design

- Flow variation
- Manufacturing
- Emission uniformity

Laboratory testing of drippers

- Discharge and coefficient of discharge variation
 - New pipes
 - Pipes recovered from the field

Test according to ISO / TC 23 / SC 18 N 89

Dripper discharge test bench

Calculations

$$\overline{q} = \frac{1}{n} \sum_{i=1}^{n} q_i$$

$$S_{q} = \left[\frac{1}{n-1} \sum_{i=1}^{n} (q_{i} - \overline{q})^{2}\right]^{1/2}$$

$$CV_q = \frac{S_q}{\overline{q}} \times 100$$

Where q_i = emitter discharge rate (ℓ/h);

n = number of emitters of the sample;

 \overline{q} = mean of all the measured discharge rates (ℓ/h);

 S_q = standard deviation of the discharge rate of the emitter CV_q = coefficient of variation of discharge of the emitters.

Criteria for CV

CRITERIA FOR CVQ (%) OF "POINT-SOURCE" DRIPPERS

Classification	ASAE EP 405.1 (1997)	Classification	ARC-IAE	ISO
Excellent	< 5	Excellent	0,1 – 2,5	
Average	5 – 7	Good	2,6 – 5,0	0,1 – 5,0
Marginal	7 – 11	Fair	5,1 – 7,5	
Poor	11 – 15	Marginal	7,6 – 10	5,1 – 10
Unacceptable	> 15	Poor	> 10	> 10

Field evaluation of drip systems

Calculations

$$Us = 100 - CVq$$

$$EU' = 100 \frac{q'_{min}}{\overline{q}}$$

```
Where U_s = statistical uniformity of emitter discharge rate (%); 

EU' = field emission uniformity (%); 

q'_{min} = measured mean of lowest ¼ of emitter discharge (\ell/h) 

\overline{q} = measured mean emitter discharge (\ell/h).
```

Criteria for EU

COMPARISON BETWEEN U _s AND EU FOR DESIGN PURPOSES								
Classification	U _s (%)	EU (%)						
Excellent	95 — 100	94 — 100						
Good	85 – 90	81 – 87						
Acceptable	75 – 80	68 – 75						
Poor	65 – 70	56 – 62						
Unacceptable	< 60	< 50						

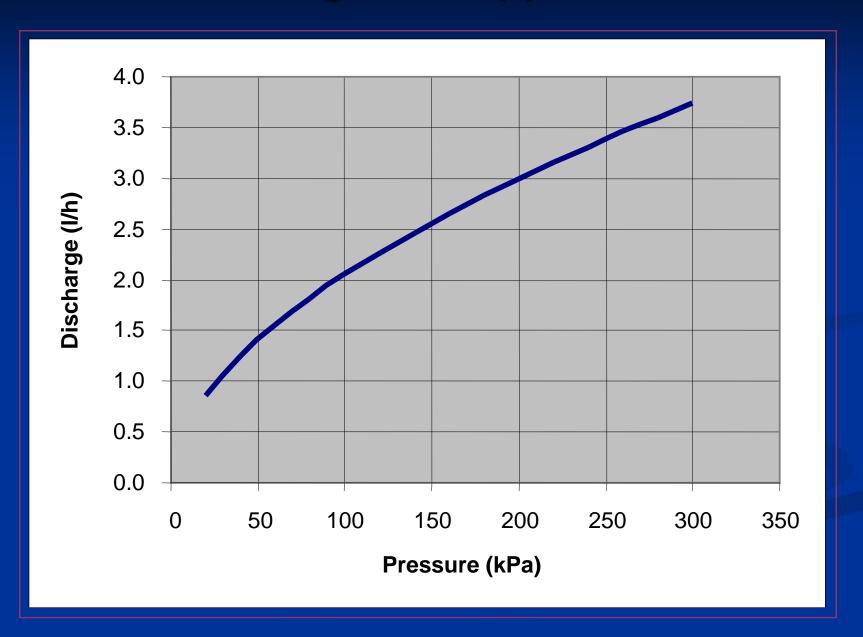
Drippers

- Agriplas
 - Drip-In Regular
 - Agridrip Pressure Compensated
- Netafim
 - Ram Pressure Compensated

Agriplas dripper

PARTICULARS OF AGRIPLAS DRIP-IN REGULAR AND AGRIDRIP PRESSURE COMPENSATING EMITTERS

		Nominal Flow-path (labyrinth) particulars				
Code	Emitter description	discharge (ℓ/h) @ 100 kPa	Depth (mm)	Width (mm)	Length (mm)	Туре
GA GB GC GD	12 mm 2 ℓ/h Regular 12 mm 4 ℓ/h Regular 16 mm 2 ℓ/h Regular 16 mm 4 ℓ/h Regular	2 4 2 4	0,9 0,9 0,95 1,28	1,0 1,0 1,0 1,4	155 49 183 158	Non compensating long flow-path turbulent flow in line emitter.
KE KF	16 mm 2,2 ℓ/h Pressure Compensating (PC) 16 mm 3,6 ℓ/h Pressure Compensating (PC)	2,2 3,6	1,0 1,35	0,95 0,95	40-250 40-250	Pressure compensating varying flow-path length, turbulent flow in line emitter.


Flow-path: Labyrinth

Outlets: 2 of 2 mm diameter

Construction operating pressure: Regular: Maximum 250 kPa, minimum not applicable, PC: Maximum 350 kPa, minimum 60 kPa. The pressure compensation process is achieved by a silicone membrane, which controls the emitter's labyrinth length that alters from a minimum length of 40 mm to a maximum length of 250 mm when pressure changes occur within the drip lateral.

Nominal discharge: This is not the measured actual discharge, but the descriptive discharge.

Regular dripper

Netafim dripper

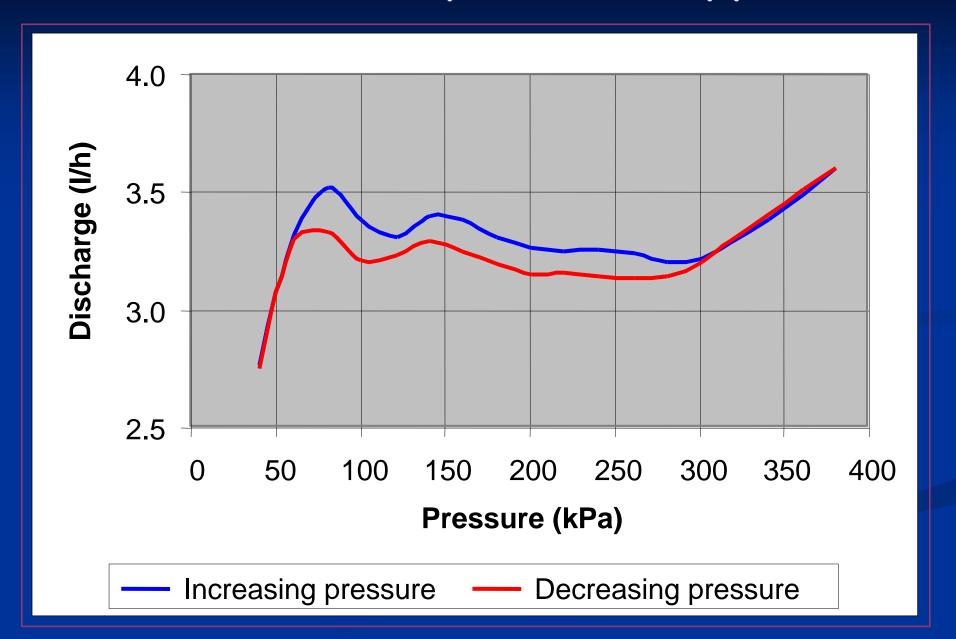
PARTICULARS OF NETAFIM RAM PRESSURE COMPENSATING (PC) EMITTERS

		Nominal	Flow-path (labyrinth) particulars				
Code	Emitter description	discharge (ℓ/h) @ 100 kPa	Depth (mm)	Width (mm)	Length (mm)	Туре	
KG KH KJ KK	17 mm 2,3 ℓ /h PC 17 mm 3,5 ℓ /h PC 20 mm 2,3 ℓ /h PC 20 mm 3,5 ℓ /h PC	2,3 3,5 2,3 3,5	1,15 1,20 1,15 1,20	1,15 1,75 1,15 1,75	22 22 22 22	Pressure compensated integral lateral, turbo net flow- path, self-flushing with pressure difference.	

Flow-path: Turbo net flow-path

Outlets: 1

Construction material: Polyethylene


Permissible operating pressures: 30 kPa till burst pressure of pipe. Pressure compensation:

30 kPa - 400 kPa.

All tests are performed on PC drippers with GPDM membranes.

Nominal discharge: This is not the measured actual discharge, but the descriptive discharge.

Pressure compensated dripper

Field evaluation of drip systems

- 42 drip systems in six catchment area
- Discharge and coefficient of discharge
- Test according to ASAE EP 458

Results

Summary of the CV for new and used drippers

SUMMARY OF THE AVERAGE COEFFICIENT OF VARIATION (CVQ) OF THE NEW AND USED DRIP LINE

Emitter	New CV _q (%)	Used Year 1 CV _q (%)	Used Year 2 CV _q (%)
Drip-In 2 ℓ/h, 12 mm	2,1	4,9	-
Drip-In 4 ℓ/h, 12 mm	3,8	5,3	10,4
Drip-In 2 ℓ/h, 16 mm	2,4	7,2	8,2
Drip-In 4 ℓ/h, 16 mm	2,2	5,6	6,6
Agri PC 3,6 ℓ/h, 16 mm	3,4	9,1	7,8
Ram 3,5 ℓ/h, 17 mm	4,0	6,6	8,0
Average CV _q	3,0	6,5	8,2
Classification	Good	Fair	Marginal

Laboratory testing of used drippers

PERCENTAGES OF DRIP LINES WITH EMITTER DISCHARGES DEVIATING FROM THE AVERAGE DISCHARGE OF NEW EMITTERS

Emitter type	Reduced Discharge (%)		Average discharge (%)		Increased discharge (%)	
Year of sampling	Year 1	Year 2	Year 1	Year 2	Year 1	Year 2
Agriplas Drip-In Regular (Non-compensated)	50	54	8	25	42	21
Agriplas Agridrip (Pressure compensating)	0	0	0	0	100	100
Netafim Ram (Pressure compensating)	16	6	21	12	63	82

Field evaluation results

Specific sites results										
Site	EU %	Eu _a %	Us %	CV %	q _{max}	q _{min}	q _{ave}	FV %		
Inyoni	90,9	89,1	90,9	9,1	1,3	1,0	1,1	20		
Savan	81,3	80,6	83,3	16,2	2,0	1,3	1,6	70		
Simu1	93,8	89,0	83,1	16,9	1,9	1,5	1,6	40		
Simu2	61,6	61,6	57,2	42,8	2,9	0	1,8	290		

Field evaluation

THE AVERAGE EU' VALUES PER DRIPPER TYPE PER AGE GROUP UNDER FIELD CONDITIONS IN PERCENTAGE

Dripper type	^ ^ ^ ^ ^ ^ ^ ^	Date						
Dripper type	Age	Year 0	Year 1 Q1	Year 1 Q2	Year 2			
Pam PC	< 5 year	88,5	87,6	86,3	84,8			
Ram PC	> 5 year	89,8	88,7	88,6	88,2			
Agridrip PC	< 5 year	89,5	86,3	86,9	75,2			
Drin In Bogular	< 5 year	86,4	82,9	76,6	80,9			
Drip-In Regular	> 5 year	81,2	80,9	79,8	82,7			
Average EU'		87,1	85,3	83,6	82,4			

Conclusion and summary

Conclusion and summary

PERFORMANCE OF DRIPPERS										
	C,	/ %	Us %	EU	/ %					
	New	Used	> 80%	Year 1	Year 2					
Ram PC	3,3	6,6	84	89,2	86,5					
Agridrip	3,8	9,1	50	89,5	75,2					
Drip-In Regular	2,6	5,7	58	83,8	81,8					
Average	3,2	7,1	64	87,5	81,2					

Operation and maintenance

MINIMUM MAINTENANCE SCHEDULE REQUIREMENTS FOR DRIP IRRIGATION SYSTEMS

Monitor	Every cycle	Monthly	Yearly
Inspect system for leaks and calcium carbonate precipitation	✓		
Check pressure difference across filters and system operating pressure	✓		
Adjust filter back flush cycle		✓	
Flush laterals (depending on water quality)		✓	
Clean filters thoroughly		√	
Service air valves and pressure control valves			✓
Check hydraulic and electrical connectors			✓
Check hydraulic valves and filters to inspect moving parts			✓
Replace sand of sand filters			✓
Chlorine treatment (depending on water quality and application method)			1
Take water samples at end of the laterals and evaluate changes in water quality			√

GREENDRUM TECHNOLOGY TO CLEAN DRIPPERLINES

Greendrum technology uses ultra-sonic sound in a small body of water to effectively and quickly clean drip irrigation lines and pipes with ease. It is environmentally friendly and does not use any

chemicals.

What the ultrasonic sound does is create millions of tiny vacuum bubbles on every micro surface of the dripline that will then implode in the pipe and cause shockwaves that completely strip all impurities in seconds.

A technical evaluation was done by the Agricultural Research Council-Institute for Agricultural Engineering in South Africa on the Greendrum dripline cleaning machine and the results showed that there was a 73% change in the Coefficient of variation (CV) of the dripper line from a bad CV of 10,57% to an excellent CV of 2,85%

