

WHAT INTEREST OF DRIP IRRIGATION FOR CASH CROPS IN FRANCE?

Bernard LACROIX

b.lacroix@arvalisinstitutduvegetal.fr

Marc Berrodier Sophie Gendre Bruno Fontaine Alain Bouthier

Bruno Molle Cyril Dejean

Jean-Marc Deumier

Presentation outlines

- **1. Introduction**
- 2. Cost comparison of drip and sprinkling irrigation for cash crops
- 3. Water, energy and labour savings
- 4. Others benefits and risks
- 5. Questions and experimental approaches
- 6. Conclusions

Introduction

Share of irrigation techniques in France (Source: Agreste)

Introduction

Introduction

Drip irrigation for cash crops

- Difficult to estimate up-to-date drip irrigated areas
- Mainly used in arboriculture and market gardening
- A few hundred hectares of cash crops in 2012, mainly Potatoes, Seed maize, Grain maize, Tobacco
- Farmers are interested by potential advantage of drip irrigation :
 - \checkmark More uniformity in water distribution
 - \checkmark No evaporation or drift losses
 - \checkmark Limited soil evaporation loss
 - \checkmark Possibility to irrigate with strong winds
 - ✓ Adaptation to irregular plots contours
 - ✓ Energy savings due to lower pressure requirement
 - ✓ Labour savings during irrigation season when automated
 - ✓ Easier use of fertigation to improve nitrogen efficiency

Cost comparison of drip and sprinkling irrigation for cash crops

Center -pivot

Mobile-gun (hose-reel)

Sub-surface Flat dripper

On-surface reusable cylindric dripper On-surface reusable flat-dripper On-surface disposable tape

DRIP IRRIGATION FOR WATER SAVING: THE WINNING FORMULA?

Cost comparison of drip and sprinkling irrigation systems on a schematic 30 ha plot of grain maize

600 m

- Technical dimensions for each system to deliver
 - ✓ 3 000 m³.ha⁻¹.year ⁻¹
 - ✓ 6 mm/day maximum flow

• 200 m

- Costs calculation
 - ✓ Based on 2 000 m³.ha⁻¹.year ⁻¹ as interannual average summer water amount applied, common to all systems in a first hypothesis

Electrical efficiency = 0.9

Pressure losses calculated by Hazen-Williams formula Working time of mobile gun : 20 h/day

Center-Pivot

and sprinkler solid-set system for edges

Pump hydraulic efficiency = 0.75Pressure losses calculated by Hazen-Williams formulaElectrical efficiency = 0.9Working time 24 h/day

Pump hydraulic efficiency = 0.75Pressure losses calculated by Hazen-Williams formulaElectrical efficiency = 0.9Working time 24 h/day

Pump hydraulic efficiency = 0.75Pressure losses calculated by Hazen-Williams formulaElectrical efficiency = 0.9Working time 24 h/day

Cost comparison of drip and sprinkling irrigation systems on a schematic 30 ha plot of grain maize

Investment and elements for cost calculation

	dripperlines				Sprinkling	
Equipment type	Sub	on-surface			Mobile	
	-surface	reusable		disposable	gun	center
	Flat dripper	cylindric dripper	flat dripper	tape	(hose-reel)	-pivot
Total investment (equipment, pipes, pump, well) (€/ha)	3 450	3 600	1 570	1 420	1 790	2 015
operating annual time for 2000 m ³ .ha ⁻¹ .year ⁻¹ (hours/year)	800	800	800	800	667	810
Labour during the season (hours/ha/year)	1.4	1.4	1.4	1.4	4.6	1.2
Labour setting and removing equipment (hours/ha/year)	4*	10	13	9		

* annual allocation of cost of the operations of setting and removing equipment

Labour cost : 17 €/hour Electricity cost : 0.104 €/kWh Water Agency fee : 0.0083 €/m³

DRIP IRRIGATION FOR WATER SAVING: THE WINNING FORMULA?

Cost comparison of drip and sprinkling irrigation systems on a schematic 30 ha plot of grain maize

DRIP IRRIGATION FOR WATER SAVING: THE WINNING FORMULA?

Water savings and uniformity

Saving evaporation in the air and wind drift

Equipment type	conditions	application efficiency Water received by crop and soil / water at the outlet of the equipment	spatial uniformity
Mobile gun	good conditions	85% to 95%	++
	windy conditions	75% to 85%	+
Center-pivot, spray line, spray line on hose reel	good conditions	90% to 95%	+++
	windy conditions	80% to 90%	+++
sprinkler solid set system	good conditions	80% to 95%	++
	windy conditions	70% to 80%	+
drip irrigation	new equipment	90% to 95%	++++
	ageing, clogging	60% to 90%	++

(according Granier and Deumier, 2013)

Reducing soil water evaporation after irrigation

- Irrigation water losses by soil water evaporation
 - Mainly significant in the 1st stages of maize cycle when soil is not covered by the canopy
 - Decrease when LAI increase
- Drip irrigation benefit

Mainly expected in dry spring years with early irrigation

Estimated total water savings of drip irrigation versus mobile gun

- Water : 10% 20%
- Reduction of operating cost : 3 7 €.ha⁻¹.year ⁻¹
- Reduction of fixed annual cost : 20 €.ha⁻¹.year ⁻¹
 (enlarging technical depreciation period)

Energy savings (case study)

Pressure requirement

- Hose-reel inlet : 5 to 8 bars
- Center-pivot : 5 bars
- Drip system : 3 to 4 bars

kWh / m³

- Mobile gun : 0.34
- Center-pivot : 0.28
- Drip system : 0.16

Pump power

- Mobile-gun : 30 kW
- Center-pivot : 18.5 kW
- Drip irrigation : 12 kW

€ / ha (2000 m³.ha⁻¹.year ⁻¹)

- Mobile gun : 70
- Center-pivot : 58
- Drip system : 33

Coexistence of drip irrigation and sprinkling irrigation (mobile gun to irrigate at crop emergence)

- Often in the field on the same pumping station ⇒ no energy savings
- To save energy, requiring a speed variator

Labour savings

- During the season, drip irrigation with automation needs small workloads :
 - ✓ Drip : 1.4 hour/ha/year
 ✓ Mobile gun (hose-reel) : 4.6
 ✓ Center-pivot : 1.2
- Needs high workloads to set and remove every year on-surface drip irrigation : 9 – 13 hours/ha/year

* annual allocation of cost of the operations of setting and removing equipment

Other benefits and drawbacks of drip irrigation for cash crops

Benefits

- Splitting water and nitrogen application (fertigation) could improve water and nitrogen productivity and limit risk of drainage and nitrogen leaching.
- Reducing weed growth by limiting wetted soil surface
- Not wetting leaves by irrigation can reduce risk of foliar disease development (mildew of potatoes, mildew and sclerotinia of tobacco)
- Facilitating traffic in the field during season because of dried inter-rows
- Improving precocity for the beginning of tobacco harvest

Other benefits and drawbacks of drip irrigation for cash crops

Risks and drawbacks

- Clogging risk require
 - ✓ an efficient filtration system (automatic flushing advised)
 - ✓ monitoring along season difficult to identify losses in uniformity,
 - \checkmark Not adapted when iron water content is too high,
 - \checkmark injection of acids to destroy precipitates and biofilms.
- Birds, rodents and insects (wireworms, corn borer) may damage on-surface drip lines but also sub-surface systems
- Increasing risk of damage by acarian on maize in the south of France or common scab on potatoes
- Sub-surface irrigation
 - ✓ needs fully irrigated crop rotations : maize monoculture not potatoes or tobacco
 - \checkmark inadequate to stony soils because installation constraints and associated cost
 - ✓ minimum tillage is recommended to avoid crashing the lines
 - ✓ risk of damage in case of harvest in wet conditions
- Need a complementary equipment to irrigate for spring crops emergence

Questions and experimental approaches

Field experiments on maize are in progress in France :

- Mediterranean climate (Montpellier) by IRSTEA
- Poitou-Charentes region and Rhône-Alpes region by ARVALIS
- Midi-Pyrénées region by CACG

to deal with following issues :

- With on surface or sub-surface drip irrigation, can grain yield be equal or higher than with sprinkling irrigation when water resource is abundant or scarce?
- What can be expected in terms of water savings from drip irrigation in dry year and in wet year? Is sub-surface drip irrigation the best water saving equipment?
- Which method and sensors can be used to optimize surface or sub-surface drip irrigation management depending on water resource availability?
- How to manage nitrogen fertigation to get the best productivity? Does-it allow to reduce nitrogen quantity?

- **Overcost of drip irrigation** systems compared to sprinkling irrigation : first limiting factor for cash crops in France
- Life span issue is very important : studying ageing mechanisms on surface and sub-surface drip irrigation
- Experiments in progress
 - \checkmark quantification of cost benefice ratio
 - \checkmark precise their domain of interest in the future
- Increase of farms and plots size will promote center-pivot.
- Sub-surface drip irrigation may replace sprinkler solid set system to irrigate edges of center-pivot.
- Automation is required in installation / remove of annual drip irrigation systems

Thank you for your attention

DRIP IRRIGATION FOR WATER SAVING: THE WINNING FORMULA?