Value of Ecosystems Services provided by Irrigated Rice Agriculture : A case study in Thailand

Dr. Damien Jourdain

- Ecosystem services
- Valuation of Ecosystems Services : Practice and Challenges
- A case study in Thailand

ECOSYSTEM SERVICES

Introduction

- Increasing recognition that ecosystems
 - are providing multiple « services », but
 - many services are not properly taken into account
 - leading to ecosystems degradation (overuse, pollution, etc.)
- Need to value those services to better manage ecosystems:
 - Make these services more « visible »
 - Produce a more balanced set of services

The idea is not new...

- Plato (Antiquity) → already talk about effect of deforestation on water services
- Early ecological movements (70's, 80's)
- Costanza, R., et al. (1997). The value of the world's ecosystem services and natural capital. *Nature*.

 \rightarrow Total value of ES on earth

- Millenium Ecosystem Assessment → methodological framework (2003-5)
- TEEB (2007-) → Cost-Benefit Framework
 - The costs of the loss of biodiversity & ES versus the costs of effective conservation

Alternative definitions

- "The benefits people obtain from ecosystems" (MEA)
- "Ecosystem services are not the benefits humans obtain from ecosystems, but rather, the ecological components directly consumed or enjoyed to produce human well-being" (Boyd J. et Banzhaf S. ,2007)

Different visions of Ecosystems

Stock-Flow

- « Stock » of matter & stored energy, that can be transformed into economic products and then returned to nature as waste (« Flow »)
- Products
 - Are physically transformed
 - Used at a chosen rate
 - can be stockpiled
 - are quantitatively used-up

Fund-Flux

- **« Fund »** that provides a regular **« flux »** of services
- Flux
 - Are **NOT** materially transformed into what they produce
 - Can only be used at a given rate that we do not control
 - Cannot be stockpiled
 - Are worn out when consuming, **not used up**

Configuration matters

- Fund is <u>a particular configuration</u> of a given stock of resource
 - Automobile
 - ▲ Stock of steel, plastic,...
 - A particular configuration of steel, aluminium, plastic
 - A Fund of transportation services
 - After a car accident
 - A the same stock of steel, aluminium, plastic
 - A but cannot not provide services anymore!

What do we want from ecosystems?

 We want to maintain some natural capital (fund), that will produce some functions of use to humans (flux)

• Stock alone is not enough since different configurations of capital will generate different flux of services

Functional classification

Provisioning Services

Products obtained from ecosystems

- Food
- Fresh water
- Fuelwood
- Fiber
- Biochemicals
- Genetic resources

Regulating Services

Benefits obtained from regulation of ecosystem processes

- Climate regulation
- Disease regulation
- Water regulation
- Water purification
- Pollination

Cultural Services

Nonmaterial benefits obtained from ecosystems

- Spiritual and religious
- Recreation and ecotourism
- Aesthetic
- Inspirational
- Educational
- Sense of place
- Cultural heritage

Supporting Services

Services necessary for the production of all other ecosystem services

Soil formation

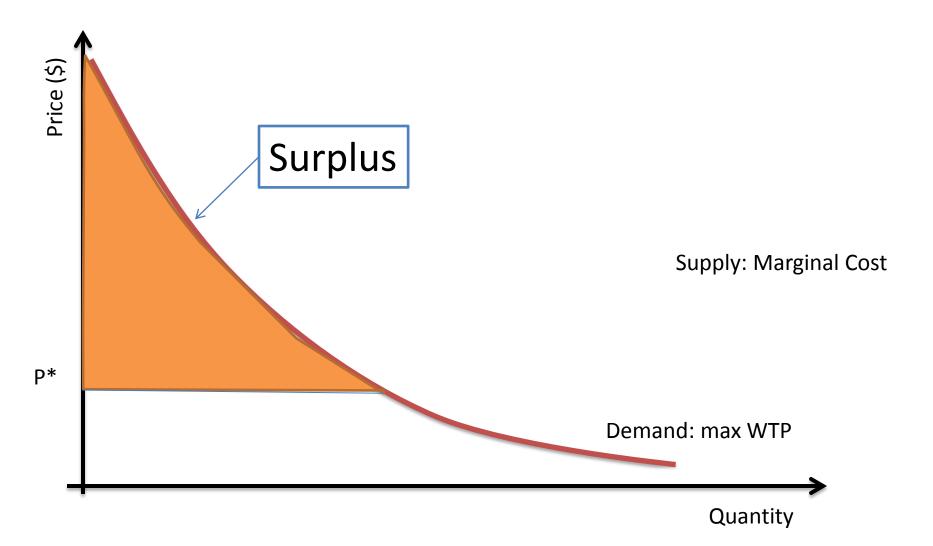
Nutrient cycling

Primary production

Millennium Ecosystem Assessment. (2003). Ecosystems and human well-being: A framework for assessment. Island Press, Washington D.C.

NRM Issues in Asia

Challenges with ES


- Relationship between configuration and flux is often not well understood
 - Ecosystems are complex
 - Difficult to know what configuration is needed
- Decision making requires some ideas about the cost and benefits of maintaining ES?
 - What is the value of the ES produced?
 - What services are we valuing?
 - How do we calculate the value of the services (market/no market conditions)

VALUE OF SERVICES & WELFARE ECONOMICS

WTP – WTA

- Transform well-being effects into monetary units
- Willingness to Pay: Maximum amount of money you would be willing to pay to:
 - Get access to the good/service
 - Avoid a bad / dis-service
- Willingness to Accept:
 - What is the minimum amount of money you would require to make you indifferent between current situation and:
 - Be exposed to an additional bad / dis-service
 - Lose access to an existing good / service

Value in economics: market case

Without markets: Demand curve approaches

Revealed preference methods

- Based on actual observable choices and from which actual resource values can be directly inferred (mostly based on actual market prices or costs incurred)
 - Travel Cost Method
 - Hedonic pricing

Stated preference methods

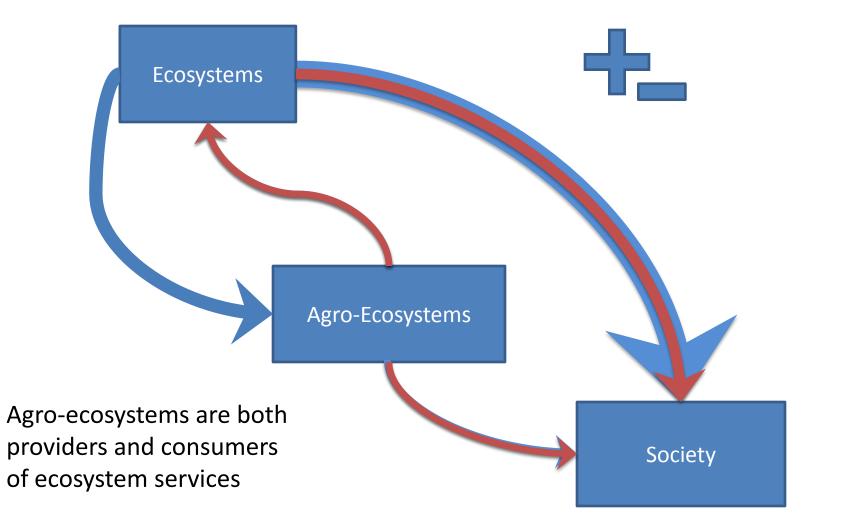
- Elicit respondents' WTP when the value is not directly observable → hypothetical markets
 - Contingent valuation: one scenario = bundle of services
 - Choice modelling : ≠ bundles of services contrasted on important attributes

2 MAIN QUESTIONS REMAINING

(... BESIDES UNDERSTANDING HOW THE SYSTEMS WORK!)

Framework:

Is Valuation & CBA the right approach?

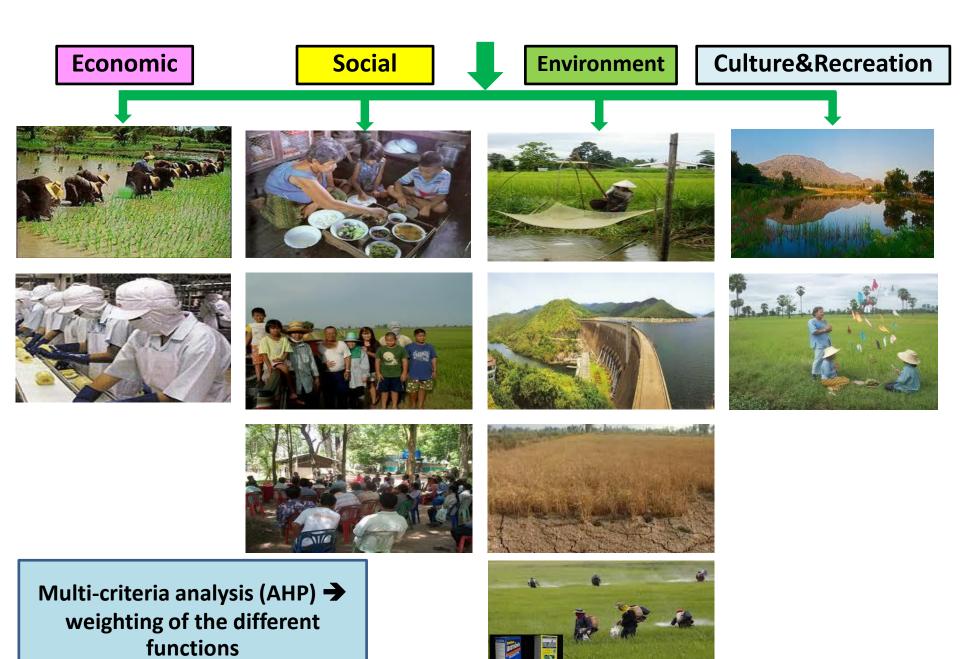

- **Substitutability** of services?
 - Implicit when valuing services
 - Some services may be difficult to replace
- In-commensurability of the different services provided
 - Impossibility to trade-off...
 - Multi-criteria decision making (non compensatory) necessary?
- Intrinsic vs. instrumental value of ecosystems:

Methodological: Do we capture the right value?

- Double counting of some services?
- Hypothetical bias
 - Functions not well understood
 - Value more things once they have disappeared
- Strategic behavior
 - Incentive to « declare » higher WTP
 - Public good \rightarrow free ride?
- Scale effect
 - WTP for moral conscience but not proportional to the problem
 - WTP equal for one ha of wetland than for the entire wetland → aggregation is difficult
- WTA >>>> WTP

AGRO-ECOSYSTEMS & ECOSYSTEM SERVICES

A complex relationship

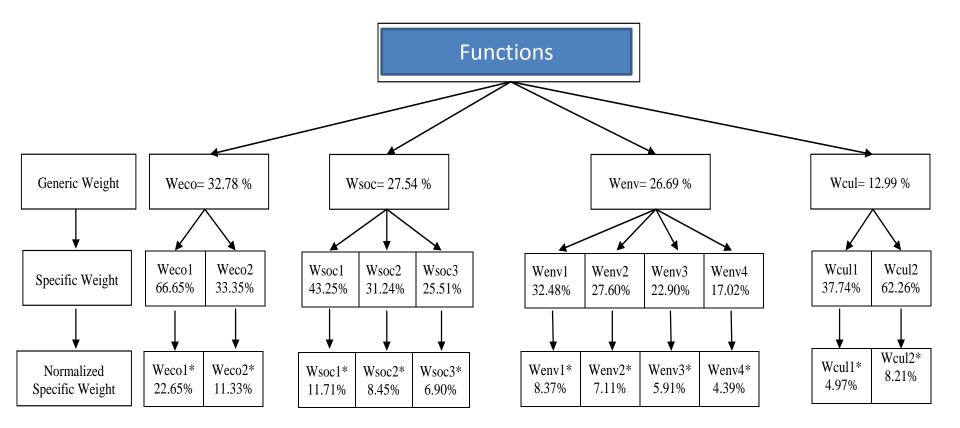


Irrigated Rice in N-E Thailand

- Identify a set of market value and non-market value potentially delivered by irrigated agriculture (focus groups)
- Stratified sample (350) of different segment of the population (rural/urban and socio-economic status) in Nakhon Ratchasima province
- Analyze weighting of market and non-market functions (multi-criteria paradigm → AHP)
- Value different functions of irrigated agriculture (Willingness to Pay → Choice Modelling)

ES of irrigated rice agriculture

Main Services	Economic services	Social services	Environmental and	Cultural and
	(Weco)	(Wsoc)	Regulating services	Recreational
			(Wenv)	services (Wcul)
Sub-services	1. higher yields and	1. Sufficient food	1. Conserve	1. Maintain rural
	better income	throughout the year	ecosystems and	landscapes (Wcul1)
	(Weco1)	(food security)	biodiversity (Wenv1)	
	2. Employment in	2. Decrease	2. Suppress flow to	2. Maintain rural
	the agro-industrial	migration to urban	mitigate flooding	lifestyles and inherit
	sector, improve the	areas		cultures and
	local economy			tradition (Wcul2)
		3. Create a strong	3. Mitigate droughts	
		sense of community	(Wenv3)	
			4. Maintain water	
			quality (Wenv4)	



Choice Experiment & WTP for non-market functions

Block 2-Set 1

กรุณาเลือกแผนการที่ท่านขอบมากที่สุด และกากบาท (x) ลงในช่องทางเลือกที่ท่านเลือก

หน้าที่และคุณประโอชน์จาก	สถานะ <mark>ปัจจุบัน</mark>	ทางเลือก	ทางเลือก
ระบบและพื้นที่ชลประทาน 1.มิแหล่งน้ำเสริม/ ปลูกข้าวใน ฤดูแล้งได้ มีผลผลิตเพิ่มมากขึ้น	ผลหลิดเฉลี่ย 360 กก./ไว่/ปี	1 ได้ผลผลิตเพิ่มขึ้นปานกลาง มีมีมีมีมีน 600 กก./ไว่/ปี	2 ได้ผลผลิตเพิ่มขึ้นปานกลาง พอหอิตเพิ่มเป็น 600 กก./ไว้/ปี
2.บรรเทาผลกระทบจากปัญหา ภัยแล้ง	ความถิ่ของการเกิดภัยแอ้ง เกิดขึ้นเกือบทุกปี () () () () () () () () () () () () () (ความถิ่ของการเกิดภัยแล้ง ปีเว้ามี	ความถี่ของการเกิดภัยแล้ง ปีเว้านี่ปี
3. ควบคุม คูแลรักษาคุณภาพ น้ำในคลองชลประทานและ ลำน้ำธรรมชาศิ	คุณภาพน้ำปานกลาง ใร้ได้ เฉพาะภาคเกษตร (2 ตาว)	คุณภาพน้ำปานกลาง ใช้ได้ เฉพาะภาคเกษตร (2 ตาว)	คุณภาพน้ำสูง ใช้อนุรักษ์สัตว์นั้ องเล่นน้ำได้อย่างปออคภัย (3 ตาว)
4.พื้นที่เลษตร ทำให้คงไว้ซึ่งวิสิ ชีวิตเลษตร วัฒนธรรม ประเทณี และมีภูมิทัตน์สวยงาม	วิถิริวิตเกษตรเสื้อมออชอง ที่นที่บางส่วนอูกปล่อยทิ้งร้าง	พื้นที่บางส่วนดูกปล่อยทิ้งร้าง ไม่มีกิจกรรมทางการเกษตร	ดงไว้รึ่งวิอีขีวิตเกษตรวัฒนธรรม ประเพณิ และมิภูมิทัศน์สวยงาม
จำนวนเงินพี่ท่านเต็มใจจ่าย (บาท/ครัวเรือน/ปี)	0	800	1600
ท่านเสือกทางเสือก	ю		

Public WTP for maintenance of selected services

	WTP	S.D
Yield (USD/T)	7.6	1.8
Drought (USD/10%)	8.5	1.1
Envt / water quality 1 (USD)	46.2	7.6
Envt / water quality 2 (USD)	60.1	9.0
Lifestyle / landscape (USD)	53.2	5.5

Note: the above non-market benefits were calculated from CE results

Conclusions

- ES: easy to understand / difficult to measure!
 - Double counts of certain functions
 - Strategic behavior of some populations?
 - Scaling effect
- MCDM & Choice Modelling → different results
 - Ranking in importance does not always translate in WTP
 - Some attributes not considered (ANA)