

HYDRAULIC IRRIGATION 15 INSTALLATION

DIAGNOSIS: KNOWING OF THE SYSTEM TO

IMPROVE IT

GENDRE Sophie

s.gendre@arvalisinstitutduvegetal.fr

Presentation outlines

1. Study context

2. Methodology

3. Results

Electricity cost increasing between 2004 and 2013 in France (without taxes and subscription)

New law about electricity market:

Yellow and Green rates will disappear at the end of 2015

WORKSHOP: IRRIGATION AND ENERGY

EDEN Project

From sensor to indicator: spatial data warehouse to evaluate farm energy performance

Irrigation part

Methods development to build a diagnosis on:

- Water efficiency and consumption
 - Energy performances

Technical partners

Financial partners

MINISTERE
DE L'AGRICULTURE
DE L'AGROALIMENTAIRE
ET DE LA FORET

avec la contribution financière du compte d'affectation spéciale «Développement agricole et rural »

Presentation outlines

1. Study context

2. Methodology

3. Results

Monitoring from 2012 to 2014

- 26 Farm irrigation systems monitored (some monitored during 3 years)
 - 3 systems with measurement chain
 - 23 systems
 monitored with
 manual
 measurements

Mobile gun measurement chain

ICID2015

Mobile gun measurement chain

Organizer

Data logger Redlion

Data logger transmitter on battery, Diaxys

Pressure sensor

Presentation outlines

1. Study context

2. Methodology

3. Results

Measurement chain knowledge

For medial position Reminder: Hydraulic power = Flow x pressure 32% before 18% for mobile gun 50% after the irrigation amua Reel Sluice gate Turbine Pump Check valve HDPE (400m) Surface (223m) Buried (200m) After bump (15m) Turbine : **7**% **Buried** : **7**% Surface: 18% After pump: 1% HDPE: 36% Sluice gate + valve: 25% Difference in height: 3% (15% due to wheck valve)

82% of electrical power are used to carry water to the gun, 18% for water field spreading

Definition of simple indicators

Installation	kWh/m ³ "water meter"	kWh/m3 "flow measure"	Difference between "water meter" and flow measure"	%	kWh/m3 "optimized"	Difference between "water meter" and "optimized"	%
1	0.40	0.38	0.02	5.9%	0.28	0.12	30.5%
2	0.61	0.63	-0.01	-2.2%	0.64	-0.03	NA
3	0.49	0.39	0.10	21.3%	0.35	0.14	28.6%
4	0.62	0.43	0.19	<i>30.9%</i>	0.36	0.26	41.6%
5	0.62	0.59	0.03	4.2%	0.54	0.08	12.7%
6	0.49	0.47	0.02	4.2%	0.41	0.08	15.9%

Kwh/m³ per material

Pressure loss calculation

Hazen Williams formula

j=10,68*(QCwh)1,852*D-4,871

With j = pressure loss in water column meter/meter, Q = flow in m3/sec., Cwh = Hazen-Williams coefficient, D = diameter in meter.

Example of pressure loss in a studied installation

Comparison between installations

Definition of a constraint coefficient to consider topographic difference and distance to the water between farm

Constraint coeff. = length pump/ position in meter*
pressure loss + water level difference

Relation between kWh/m³ "water meter" and constraint coefficient for mobile gun

Conclusion and prospect

- Testing working diagnosis in 2015 on 15 new installations
- Building a database on energy in irrigation
- Improving our global knowledge about energy consumption in irrigation installations

Thanks for your attention

If you have any questions, feel free to ask

