WHAT DOES PUMP SETS ELECTRIFICATION CHANGE?

IMPACTS ON CROPPING PATTERNS, PRODUCTIVITY AND INCOMES IN WEST BENGAL

Marie-Charlotte Buisson
International Water Management Institute
m.buisson@cgiar.org
INTRODUCTION

• Learning **gaps** in impact evaluation
 • Impact evaluation of **natural resources management policies**
 • Impact evaluation of **electrification**
 • Khandker, Barnes & Samad (2013)
 • Khandker, Barnes, Samad & Minh (2009)
 • Dinkelman (2011)

What are the potential impacts of the electrification policy for agriculture in West Bengal from a micro-level farmer perspective?

What are the impacts of electric pump ownership on agricultural cropping choices, cropping intensity, yields, value added and water consumption?
OUTLINE

1 - Background: untapped potentialities of West Bengal
2 - Policy changes and descriptive statistics on the implementation
3 - Theoretical model: expected impacts and limitations
4 - Empirical model: impact evaluation design and results
5 – Conclusion and ways forward
BACKGROUND

Agricultural stagnation

Before 1980s
- Century long agricultural stagnation in West Bengal
- Regressive agrarian structure as culprit

From 1980s to mid 1990s
- Average annual growth rate of agricultural sector: 5.4% in the 1980s, 4.56% in the 1990s
- Land reform
- Institutional reform
- Green revolution and diffusion of HYV
- Access to private irrigation

Since 2000s
- Average annual growth rate of agricultural sector: 2.2% in the 2000s.
- Slow-down in the production of most of the main crops produced in West Bengal (rice, wheat, pulses, sugar cane, jute), with the exception of oil seeds.

Fig 1 - Agricultural Net Domestic Product (factor cost) in West Bengal, 1980-2011 (at constant price 1980, 1 crore = 10 million)

\[y = -1.6073x^2 + 246.06x + 1950.2 \]

\[R^2 = 0.9822 \]
Fig 2 - Quantity of *boro* rice produced in West Bengal, 1970-2010, in thousands of tonnes

Fig 3 - Area under boro paddy cultivation in 2000 and 2006
40.1% stage of groundwater development in 2009, 50.9% in 2000
38 semi-critical blocks in 2009
53 critical blocks and 26 semi-critical blocks in 2000
Decline of the number of tubewells in the 2000s (Minor Irrigation Census)
• Less than one fourth of the shallow tubewells are electrified

• Sharp increase in the diesel prices, from 8 Rs per litre in 1995 to 52 Rs in 2012

Fig 5 – Diesel prices in West Bengal from 1973 to 2009
BACKGROUND
Slow down in the electrification

Fig 6 - Number of electric tubewells newly electrified each year in West Bengal and Bangladesh
Groundwater Act (2005), farmers required a **permit** from SWID before applying for an electric connection

- Administrative hassle
- Rent seeking issues

Fig 7 - Level of GW development and % of permit rejections

- 64% of the applications were rejected
- Inconsistency between the level of GW development and the acceptations/rejections of permits
Farmers had to pay the **full cost of the investment** (poles, wires, transformers)

Fig 8 - Investment cost for the electric connection, in Rs (current prices)
Amendment of the Groundwater Act

- WRIDD, memo dated 9 November 2011
- Change of a provision of the West Bengal Groundwater Resources Act 2005

Farmers located in “safe” groundwater blocks (301) owning pumps of less than 5 horsepower (HP) tubewells with discharge less than 30m³/hour

No longer need permits from the SWID to obtain an electric connection

One Time Assistance for Electrification of Agricultural Pump-sets

- OTA-EAP, Department of Agriculture, November 2012

Subsidy is available for pump-set electrification
Payment of a lumpsum from 8,000 to 10,000 Rs

No longer need to pay the full cost
Fig 9 - Number of shallow tubewells permanently electrified

→ New sharp increase in the number of electric connections provided
THEORETICAL MODEL
Expected impacts – Micro level

DIRECT EFFECTS
• Direct beneficiaries
• Owners of electric pumps

SELLING EFFECT
ียว New income or ↗ income

PRICE EFFECT
↙ Price of irrigation

TIMING EFFECT
↙ Restriction on timing of irrigation

QUANTITY EFFECT
↗ Physical availability of water

EXPECTED OUTCOMES
↗ Profitability of the farm
↗ Yields
Change in cropping patterns
↗ Crop intensity

INDIRECT EFFECTS
• Indirect beneficiaries
• Water buyers

Tarif of irrigation

PRICE EFFECT

Restriction on timing of irrigation

TIMING EFFECT

Physical availability of water

QUANTITY EFFECT
THEORETICAL MODEL
Impact impeders, limitations

- **Conversion**
 - Conversion from diesel to electric pumps
 - Conversion from temporary to permanent electric connections

- **Regularization of unregistered connections**

- **Demand outstrips supply and increasing gap**
 - Budget allocation
 - Supply chain constraints
 - New connections given in a limited number of districts

- **Awareness of the policy change**

<table>
<thead>
<tr>
<th>Policy</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Removal of the SWID permit clearance (2011)</td>
<td>14.84</td>
</tr>
<tr>
<td>One time assistance for electrification of pump-sets (2012)</td>
<td>21.73</td>
</tr>
</tbody>
</table>

Tab 1 – Percentage of households aware of different agricultural policies
Objective: Comparing a situation with electrification policy with what would have happen without the policy

Challenge

• Unobserved ‘perfect’ counterfactual
• Observed non treated units ≠ Treated units in terms of observable and unobservable characteristics

→ Identification of a counterfactual

Combination of quasi-experimental impact evaluation methodologies

Regression discontinuity design (RDD) → Selection of the blocks

Propensity score matching (PSM) → Selection of the households
Selection of safe (treated) and semi-critical blocks (non-treated) with the same characteristics, only the policy differs.

Assignment variables for block categorisation (SEC 97)
- Stage of groundwater development (SOD), percentage of extraction to net renewable recharge
- Decline of groundwater level before and after monsoon

Fig 12 – Categorization and selection of the blocks
EMPIRICAL MODEL
Regression discontinuity design (2)

Survey in
14 safe blocks
10 semi-critical blocks

Survey in
93 villages
1395 households

Survey conducted in May and June 2013

Fig 13 – Map of the surveyed blocks
EMPIRICAL MODEL
Propensity score matching

Selection of electric pump owners (treated) and non electric pump owners (non-treated / counterfactual) with the same characteristics

- Estimation of **model of treatment**
 - **Independant variable** - Dummy equal to 1 if the household is an electric pump owner
 - **Dependant variables** - 4 sets of determinants:
 - **Interest.** Is there any advantage for this farmer to become a pump owner? *Land size, productive assets index, number of pump owners in the village*
 - **Social ability.** Is this farmer able to undertake the steps required to get an electric connection? *Age, level of education, social capital*
 - **Economic solvability.** Is this farmer economically able to invest in the pump set and in the connection? *Poverty level*
 - **Environmental suitability.** Are the groundwater trends in the villages favourable? *SOD, pre/post monsoon decline*
EMPIRICAL MODEL
Results – *Cropping patterns*

<table>
<thead>
<tr>
<th></th>
<th>(1) ATE</th>
<th>(2) Weighted OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>crop_intensity</td>
<td>10.673**</td>
<td>19.962***</td>
</tr>
<tr>
<td></td>
<td>[5.519]</td>
<td>(4.559)</td>
</tr>
<tr>
<td>p_aman</td>
<td>0.0691***</td>
<td>0.0601***</td>
</tr>
<tr>
<td></td>
<td>[0.0259]</td>
<td>(0.0236)</td>
</tr>
<tr>
<td>p_mustard</td>
<td>0.0389**</td>
<td>0.0133</td>
</tr>
<tr>
<td></td>
<td>[0.0188]</td>
<td>(0.0183)</td>
</tr>
<tr>
<td>p_potato</td>
<td>-0.0377**</td>
<td>-0.0164</td>
</tr>
<tr>
<td></td>
<td>[0.0177]</td>
<td>(0.0172)</td>
</tr>
<tr>
<td>p_boro</td>
<td>0.210***</td>
<td>0.273***</td>
</tr>
<tr>
<td></td>
<td>[0.0319]</td>
<td>(0.0283)</td>
</tr>
<tr>
<td>Common support sample</td>
<td>Non treated</td>
<td>1014</td>
</tr>
<tr>
<td></td>
<td>Treated</td>
<td>354</td>
</tr>
<tr>
<td>Sample size</td>
<td></td>
<td>920</td>
</tr>
</tbody>
</table>

Note: Figures in brackets are the bootstrapped standard errors (50 replications) and figures in parentheses are the standard errors. *** stands for 1% of significance, ** for 5% and * for 10%.

Tab 3 - Impact on cropping patterns

Electric pump ownership has a significant and **positive impact** on the cropping intensity.

Proportion of cultivated area under boro paddy is significantly **higher** for electric pump owners.
EMPIRICAL MODEL
Results – *Aman paddy*

<table>
<thead>
<tr>
<th></th>
<th>(1) ATE</th>
<th>(2) Weighted OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>output_aman_kg_ac</td>
<td>73.864*</td>
<td>68.669</td>
</tr>
<tr>
<td></td>
<td>[42.413]</td>
<td>(44.963)</td>
</tr>
<tr>
<td>VA_aman_ac</td>
<td>845.951*</td>
<td>811.774)</td>
</tr>
<tr>
<td></td>
<td>[494.488]</td>
<td>(512.309)</td>
</tr>
<tr>
<td>nb_irri_aman_ac</td>
<td>12.281*</td>
<td>11.7405***</td>
</tr>
<tr>
<td></td>
<td>[4.335]</td>
<td>(3.892)</td>
</tr>
</tbody>
</table>

Common support sample

<table>
<thead>
<tr>
<th></th>
<th>Non treated</th>
<th>Treated</th>
</tr>
</thead>
<tbody>
<tr>
<td>nb_irri_aman_ac</td>
<td>761</td>
<td>323</td>
</tr>
</tbody>
</table>

Sample size 784

Note: Figures in brackets are the bootstrapped standard errors (50 replications) and figures in parentheses are the standard errors, *** stands for 1% of significance, ** for 5% and * for 10%.

Tab 4 - Impact on yield, value added and irrigation for aman

Being an electric pump owners has a significant positive impact on the number of irrigation for aman.

No significant impact on yields or value added for aman.
Impact on the yields of boro is not robust.

Significant and positive impact on the value added of boro, price effect.

Being an electric pump owners has a significant positive and high impact on the number of irrigation for boro.

EMPIRICAL MODEL

Results – Boro paddy

<table>
<thead>
<tr>
<th>Impact on yield, value added and irrigation for boro</th>
<th>(1) ATE</th>
<th>(2) Weighted OLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>output_boro_kg_ac</td>
<td>139.769**</td>
<td>97.888</td>
</tr>
<tr>
<td></td>
<td>[68.0566]</td>
<td>(69.272)</td>
</tr>
<tr>
<td>VA_boro_ac</td>
<td>2901.441**</td>
<td>1906.495*</td>
</tr>
<tr>
<td></td>
<td>[1160.535]</td>
<td>(1067.701)</td>
</tr>
<tr>
<td>nb_irri_boro_ac</td>
<td>30.686***</td>
<td>36.484***</td>
</tr>
<tr>
<td></td>
<td>[10.370]</td>
<td>(11.356)</td>
</tr>
</tbody>
</table>

| Common support sample | Non treated | 363 | Treated | 237 | Sample size | 470 |

Note: Figures in brackets are the bootstrapped standard errors (50 replications) and figures in parentheses are the standard errors, *** stands for 1% of significance, ** for 5% and * for 10%.

Tab 4 - Impact on yield, value added and irrigation for boro
Combination of quasi-experimental methods of impact evaluation to estimate the impact of policy change, revival of electrification policy in West Bengal

Results - Impact of tubewells electrification

- Change in cropping patterns, more water intensive crops (boro) and higher cropping intensity
- Higher value added, price effect confirmed for boro
- No effect on the yields, quantity effect not confirmed
- Positive impact on the number of irrigation

Risk - Overuse of groundwater, negative impact on water productivity?

- More analyses required to understand the causality between electrification of pumpsets and groundwater depletion
- Recommendation for rising the unitary price of kWh for larger consumers for create economic incentives to preserve the resource
THANK YOU

Your comments and questions are most welcome.

Marie-Charlotte Buisson
International Water Management Institute
m.buisson@cgiar.org