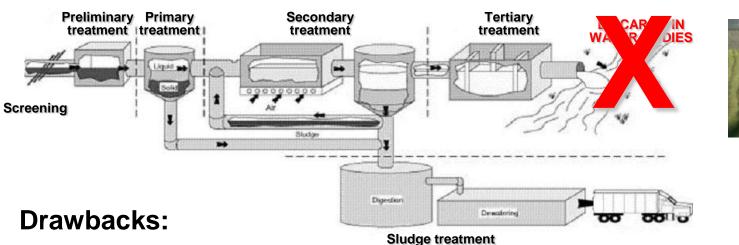


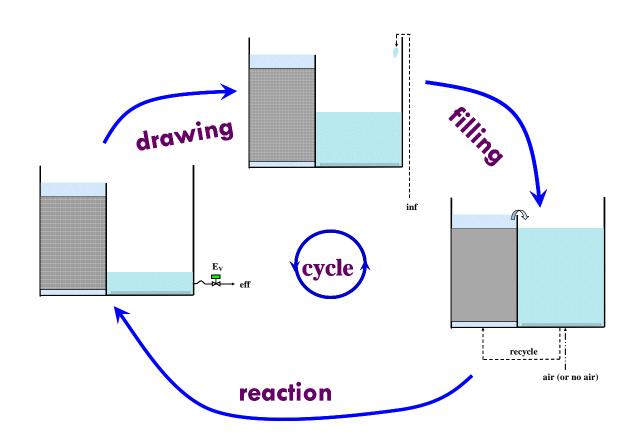
MUNICIPAL WASTEWATER REUSE IN AGRICULTURE BY AN INNOVATIVE REACTOR WITH LOW ENVIRONMENTAL IMPACT



Marco De Sanctis marco.desanctis@ba.irsa.cnr.it

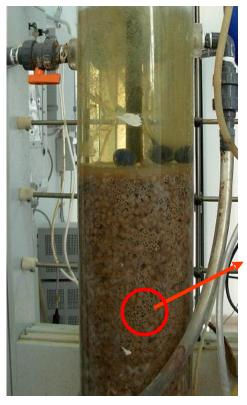
Conventional treatment line

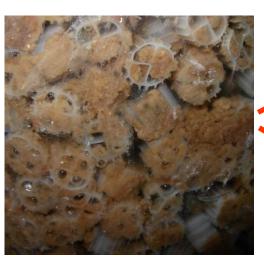
- Low settling speed (< 1 m/h)</p>
- Low organic load rate (< 1 kgCOD/m³d)</p>
- High sludge production (40-60 g/PE-d)
- Low flexibility
- > Tertiary chemical or physical disinfection
- High area requirement


Treatment based on Sequencing Batch Biofilter Granular Reactor

In comparison with the conventional treatment systems, SBBGR technology is able to:

- > Perform in a single stage the entire wastewater treatment train;
- Offer higher operational flexibility and robustness;
- Treat higher organic load rate;
- > Reduce the sludge production (up to 80%);
- > Produce an excess sludge already stabilized;
- Produce a high quality effluent;
- > Reduce area requirement.


SBBGR operation



SBBGR operation - What makes SBBGR better?

Recirculation flow generates shear stress into packed zone of SBBGR

GRANULES

BIOFILM

- ➤ High biomass concentration (30-50 kg/m³)
- ➤ High sludge retention time(≥ 200 d)

Aims and scope

Treatment and reuse in agriculture of wastewater produced by small communities

Monitored parameters

- Physical and chemical: <u>COD</u> (Chemical Oxygen Demand), <u>suspended</u> <u>solids</u>, <u>nitrogen</u>, <u>phosphorus</u>, <u>pH</u>, <u>SAR</u> (Sodium Adsorption Ratio), <u>conductivity</u>.
- **Microbiological:** <u>Faecal Contamination Indicators</u> (*E.coli, Clostridium perfingens* spores, Somatic coliphages), <u>relevant pathogenic Protozoa</u> (*Cryptosporidium parvum* and *Giardia lamblia*) and <u>Salmonella</u>.

ITALIAN microbiological requirements:

- > E. coli: 10 CFU/100 mL (< 100 CFU/100 mL in 80% of samples)
- Salmonella: absent

Strategy for wastewater reuse

SBBGR

Sand filter

Physical disinfection (UV irradiation)

Hg – low pressure lamp Emission peak: 254 nm UV fluency: ~ 40 mJ/cm²

Chemical disinfection (Peracetic acid - PAA)

PAA + H₂O₂ solution

Tested concentration: 1 mg PAA/L

Reaction time: 30 min

THEME REUSE: WHAT POTENTIAL FOR WASTEWATER USE IN AGRICULTURE?

Process evaluation

Monitored parameters

Physical and chemical parameters:

- Wastewater
- SBBGR effluent (biological treatment only)

Microbiological parameters:

- Wastewater
- SBBGR effluent (biological treatment only)
- SBBGR + Sand filter effluent
- Physical disinfection effluent (UV)
- Chemical disinfection effluent (PAA)

Physical and chemical parameters

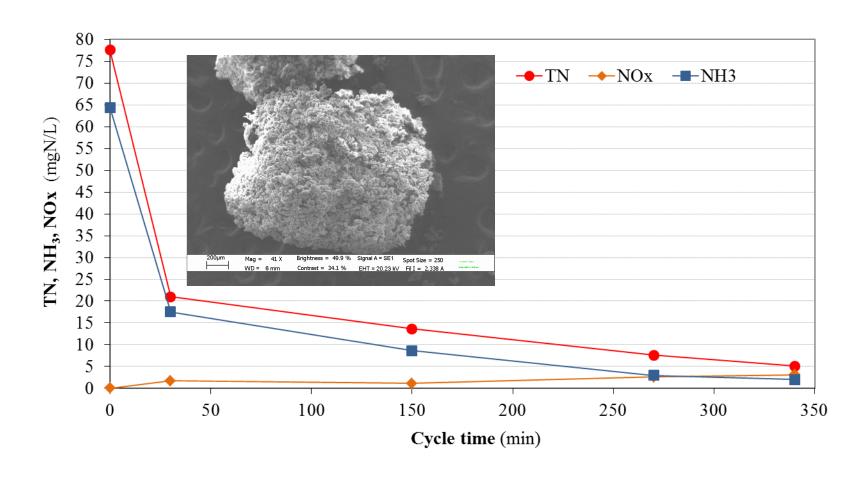
11 ± 5

4 ± 1

 52 ± 27

ICIDEOI				
26 th ERC & 66 th IE	Parameter		Mean value ± standard deviation	
		Influent [mg/L]	295 ± 596	
	TSS	Effluent [mg/L]	10 ± 10	
		Removal [%]	95 ± 5	
		Influent [mg/L]	$\textbf{259} \pm \textbf{537}$	
	VSS	Effluent [mg/L]	8 ± 8	
		Removal [%]	97 ± 3	
		Influent [mg/L]	602 ± 674	
	COD	Effluent [mg/L]	38 ± 17	
		Removal [%]	93 ± 3	
		Influent [mg/L]	52 ± 19	
	NH ₄ ⁺	Effluent [mg/L]	2 ± 5	
		Removal [%]	96 ± 8	
		Influent [mg/L]	73 ± 26	
	TN	Effluent [mg/L]	17 ± 9	
		Removal [%]	77 ± 11	

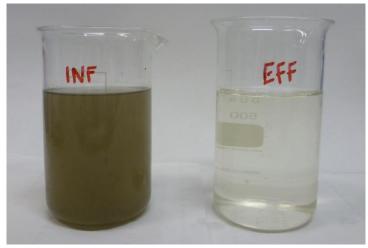
Influent [mg/L]


Effluent [mg/L]

Removal [%]

Physical and chemical parameters

Nitrogen removal

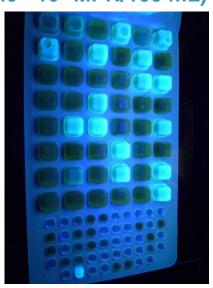


Physical and chemical parameters

Daramatar	Mean value \pm standard		
Parameter		deviation	
nU	Influent	$\textbf{7.4} \pm \textbf{0.2}$	
pH	Effluent	$\textbf{7.8} \pm \textbf{0.2}$	
Conductivity	Influent [μS/cm]	1223 ± 178	Italy: < 3000
Conductivity	Effluent [μS/cm]	892 ± 99	μS/cm
SAR	Influent	2.3 ± 0.5	Habra 40
SAK	Effluent	2.7 ± 0.1	► Italy: < 10

Wastewater SBBGR effluent

SBBGR DISINFECTION


Bacteria

Influent (1:100 dilution) (> 2.4 · 10⁵ MPN/100 mL)

E. coli

Effluent (1:10 dilution) (2.0 · 10² MPN/100 mL)

*WHO - reuse: E. coli < 10*³
CFU/100mL

Italy - Discharge in water bodies:

E. coli < 5 · 10³

CFU/100mL

SBBGR DISINFECTION

Virus and protozoa

Parameter		Mean value ± standard deviation
	Influent [PFU/100mL]	3.1 ± 3.4 ⋅ 10 ⁵
Somatic coliphages	Effluent [PFU/100mL]	$1.6\pm1.7\cdot10^4$
	LUR	1.3 ± 0.1
	Influent [Cysts/L]	$1.3 \pm 1.6 \cdot 10^3$
Giardia lamblia cysts	Effluent [Cysts/L]	$\textbf{2.9} \pm \textbf{3.6} \cdot \textbf{10}$
	LUR	1.5 ± 0.9
	Influent [Oocysts/L]	$4.7 \pm 4.7 \cdot 10^{1}$
Cryptosporidium parvum oocysts	Effluent [Oocysts/L]	$\textbf{0.7} \pm \textbf{0.5}$
pai vaiii 000y5t5	LUR	$\textbf{1.8} \pm \textbf{0.3}$

SAND FILTER DISINFECTION

Somatic coliphages

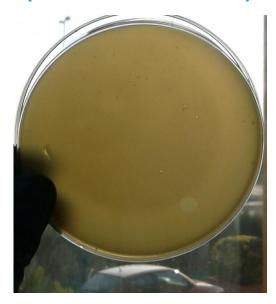
Pa

E.

Cl

pe

Sa


Gi

Cr

pa Sa SBBGR effluent

Sand filter effluent $(8 \cdot 10^3 \text{ PFU/}100 \text{ mL})$ $(1 \cdot 10^2 \text{ PFU/}100 \text{ mL})$

France: 250 - 10000

CFU/100mL

Spain: 100-1000

CFU/100mL

SBBGR + Sand filter:

2.6 log units

SBBGR + Sand filter:

3.2 log units

TERTIARY DISINFECTION

26 th ERC & 66 th IEC		UV	PAA
		(40 mJ/cm ²)	(1 mg/L)
Parameter		Mean value ±	Mean value ±
		standard deviation	standard deviation
5 !'	Effluent [MPN/100mL]	5.6 ± 5.3	Never detected
F. coli			

Clostridium perfringens spores

Wastewater SBBGR eff. Sand filter eff. UV PAA

FILT SABBIA SABBIA OV TO THE SABBIA TO

Conclusions

- Physical and chemical quality of SBBGR effluent are compatible with agricultural reuse.
- > SBBGR acts as a good disinfection system.
- ➤ The average *E. coli* content in the effluent of SBBGR would allow its reuse according to WHO criteria or discharge in water bodies according to the Italian requirements.
- ➤ The integration of SBBGR with sand filter increased microbiological quality of the effluent for all the monitored parameters (1.0-1.9 log units) and it complies quality criteria of several countries.
- SBBGR + sand filter reduced protozoa concentration to less than 1 cysts/L.
- Fritary disinfection by UV (fluency 40 mJ/cm²) or PAA (1 mg/L) reduced the *E. coli* content below 10 CFU/100mL (Italian limit for agricultural reuse).

Questions?

THANK YOU FOR YOUR ATTENTION