

Socio-economic interests of treated wastewater reuse in agriculture

Clermont-Ferrand case study cost-benefits analysis

Which wastewater reuse scenario?

Source : Ecofilae, 2015

Cost-Benefit analysis methodology

- ✓ Used for analyzing project to determine whether or not they are of public interest (economic profitability)
- ✓ To identify which stakeholders lose/win and the actions to implement to reach win/win solutions
 - 1) Sphere analysis characterization (time line, geography, stakeholders involved)
 - 2) Identification of the different projects scenarios (reuse scenario(s) and businessas-usual scenario)
 - 3) Costs and benefits identification and assessment for the different scenarios
 - 4) Net present value (NPV) calculations
 - 5) Sensitivity analysis of NPV to the main parameters

Net Present Value

the relevant economic indicator

 $NPV = \sum_{t=0}^{i} \frac{B_t}{(1+r)^t} - \sum_{t=0}^{i} \frac{C_t}{(1+r)^t}$

NPV = Net Present Value B = Benefits C = Costs T = time horizon set r = discount rate

Private NPV

		+	
Community public NPV	+	Project feasible without intervention	Project to subsidize
		Project to be dissuaded	Project not feasible

Clermont-Ferrand case study

Treated wastewater reuse scenario

Discharge 40 Mm3 /year

Clermont-Ferrand WWTP

Owner : Communauté d'Agglo de CF Manager : Veolia Capacity : 425 000 EH Treatment : Activated sludge + (Treatment N et P)

> Step 2 : TWW (price 0 €/m3)

Sugar refinery lagoons Tertiary treatment

Step 1 : sugar effluents

Step 2 : irrigation 900 000 m3/year – 5/6 months

Step 1 : spread of effluents 200 000 m3/year – End of winter

Artière – Allier Sustain compulsory environmental flows

Irrigation association perimeter

1400 Ha equiped – 700 Ha irrigated Seed maize, maize, beetroots, wheat

Contrefactual business-as-usual scenario

Discharge 40 Mm3/year

Clermont-Ferrand WWTP

Owner : Communauté d'Agglo de CF Manager : Veolia Capacity : 425 000 EH Treatment : Activated sludge + (Treatment N et P)

Artière – Allier Sustain compulsory environmental flows

Lagoons

Sugar refinery

Bedat river Individual uptakes

Agricultural area 200 Ha irrigated Wheat, Maize, No seed maize

Scenario comparison

Crops distribution

Main cost and benefit considered

- Investments (irrigation material, lagoons rahabilitation, distribution system, sanitary studies)
- ✓ Annual charges (operational, maintenance, energy)
- ✓ Agricultural gross margin
- ✓ Avoided cost of treatment for the sugar factory effluents
- ✓ Subsidies from funding agencies

Net Present Value

Projet © 2014 Ecofilae

[10]

Sensitivity analysis

Monte-Carlo method to deal with uncertainity

5	Hypothesis	Uncertainties
PARAMETERS	Deterministic approach	Lower and upper limit
Energy price increase rate	0%/year (0,05€/m³)	[0% ; +5%]
Sugar factory effluents treatment costs	1,9 €/m³	[-20% ; +30%]
Irrigation equipment life-time	20 and 50 years	[-30% : +30%]
Crops water needs	1 200 to 1 400 m ³ /Ha	[-10% ; +20%]
Agricultural production price variation	180 to 270 €/T	[-30% ; +30%]
Seed maize area variation	434 Ha (reuse)	[-30% ; +10%]
		↓
	10 000 random draws	
	↓ NPV dispersion	

Sensitivity analysis

NPV dispersion

To go further...

- \checkmark CBA = An economic support tool for decision-makers
- In Clermont-Ferrand TWWR is profitable but collective incentives could be implemented to allocate equally the collective net benefit
- ✓ Investment subsidies could have been lower
- Need to consider different time horizons and present time preference from the collectivity and the private point of view
- ✓ Difficulties to account for the possibility that agricultural land would be used for another activity in the business-as-usual scenario
- ✓ Need for further methodological developments → TWWR tailored environmental and social indicators
- ✓ Need for more feedbacks / lessons from experiences

Thank you for your attention

