Socio-economic interests of treated wastewater reuse in agriculture

Clermont-Ferrand case study cost-benefits analysis

Auteurs :
Rémi Declercq (Ecofilae) and Sébastien Loubier (IRSTEA)
Which wastewater reuse scenario?

SUSTAINABLE SCENARIOS?
THE MOST PROFITABLE SCENARIO?

Sustainability of a wastewater reuse project = Security × Profitability × Feasibility × Acceptability × Organisation

Security:
- sanitary
- agronomical
- environmental

Profitability:
- economic
- financial viability

Feasibility:
- technical
- (process) regulatory

Acceptability:
- social
- political

Organisation:
- legal framework
- institutional

Source: Ecofilae, 2015
Cost-Benefit analysis methodology

✓ Used for analyzing project to determine whether or not they are of public interest (economic profitability)
✓ To identify which stakeholders lose/win and the actions to implement to reach win/win solutions

1) Sphere analysis characterization (time line, geography, stakeholders involved)
2) Identification of the different projects scenarios (reuse scenario(s) and business-as-usual scenario)
3) Costs and benefits identification and assessment for the different scenarios
4) Net present value (NPV) calculations
5) Sensitivity analysis of NPV to the main parameters
Net Present Value

the relevant economic indicator

\[
NPV = \sum_{t=0}^{T} \frac{B_t}{(1 + r)^t} - \sum_{t=0}^{T} \frac{C_t}{(1 + r)^t}
\]

\(NPV = \text{Net Present Value}\)
\(B = \text{Benefits}\)
\(C = \text{Costs}\)
\(T = \text{time horizon set}\)
\(r = \text{discount rate}\)

<table>
<thead>
<tr>
<th>Community NPV</th>
<th>Private NPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>public</td>
<td>+</td>
</tr>
<tr>
<td>NPV</td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>Project feasible without intervention</td>
</tr>
<tr>
<td>---</td>
<td>Project to be dissuaded</td>
</tr>
</tbody>
</table>
Clermont-Ferrand case study
Treated wastewater reuse scenario

Clermont-Ferrand WWTP

Owner: Communauté d’Agglo de CF
Manager: Veolia
Capacity: 425 000 EH
Treatment: Activated sludge + (Treatment N et P)

Discharge
40 Mm3/year

Artièrè – Allier
Sustain compulsory environmental flows

Sugar refinery lagoons
Tertiary treatment

Step 1: sugar effluents
Step 2: TWW (price 0 €/m3)

Step 1: spread of effluents
200 000 m3/year – End of winter
Step 2: irrigation
900 000 m3/year – 5/6 months

Irrigation association perimeter
1400 Ha equipped – 700 Ha irrigated
Seed maize, maize, beetroots, wheat
Contrefactual business-as-usual scenario

Clermont-Ferrand WWTP

Owner: Communauté d’Agglo de CF
Manager: Veolia
Capacity: 425 000 EH
Treatment: Activated sludge + (Treatment N et P)

Discharge
40 Mm3/year

Artière – Allier
Sustain compulsory environmental flows

Sugar refinery

Bedat river
Individual uptakes

Lagoons

Irrigation
200 000 m3/year

Agricultural area
200 Ha irrigated
Wheat, Maize, No seed maize
Scenario comparison

Agricultural gross margin

Reuse scenario

- Seed maize (irrigated): 252
- Maize for consumption (irrigated): 126
- Beetroots (irrigated): 322
- Maize for consumption (rain-fed): 119
- Beetroots (rain-fed): 147
- Wheat (rain-fed): 73.3 M€

Contrefactual scenario

- Seed maize (irrigated): 50
- Maize for consumption (irrigated): 50
- Beetroots (irrigated): 300
- Maize for consumption (rain-fed): 100
- Beetroots (rain-fed): 200
- Wheat (rain-fed): 60.6 M€

73.3 M€

60.6 M€
Main cost and benefit considered

- **Investments** (irrigation material, lagoons rehabilitation, distribution system, sanitary studies)
- **Annual charges** (operational, maintenance, energy)
- **Agricultural gross margin**
- **Avoided cost** of treatment for the sugar factory effluents
- **Subsidies** from funding agencies
Net Present Value

<table>
<thead>
<tr>
<th>Category</th>
<th>NPV (Millions €)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farmers</td>
<td>5.72</td>
</tr>
<tr>
<td>Sugar factory</td>
<td>9.60</td>
</tr>
<tr>
<td>Funding agencies</td>
<td>-5.22</td>
</tr>
<tr>
<td>Total</td>
<td>10.10</td>
</tr>
</tbody>
</table>
Sensitivity Analysis

Monte-Carlo method to deal with uncertainty

<table>
<thead>
<tr>
<th>PARAMETERS</th>
<th>Hypothesis</th>
<th>Uncertainties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy price increase rate</td>
<td>0%/year (0,05€/m3)</td>
<td>[0% ; +5%]</td>
</tr>
<tr>
<td>Sugar factory effluents treatment costs</td>
<td>1,9 €/m3</td>
<td>[-20% ; +30%]</td>
</tr>
<tr>
<td>Irrigation equipment life-time</td>
<td>20 and 50 years</td>
<td>[-30% ; +30%]</td>
</tr>
<tr>
<td>Crops water needs</td>
<td>1 200 to 1 400 m3/Ha</td>
<td>[-10% ; +20%]</td>
</tr>
<tr>
<td>Agricultural production price variation</td>
<td>180 to 270 €/T</td>
<td>[-30% ; +30%]</td>
</tr>
<tr>
<td>Seed maize area variation</td>
<td>434 Ha (reuse)</td>
<td>[-30% ; +10%]</td>
</tr>
</tbody>
</table>

1 0000 random draws

NPV dispersion
Sensitivity analysis

NPV dispersion

$y = \text{Prob. NPV} < x$

$x = \text{NPV (M€)}$

- NPV Farmers
- NPV Sugar factory
- NPV total
To go further...

- CBA = An economic support tool for decision-makers

- In Clermont-Ferrand TWWR is profitable but collective incentives could be implemented to allocate equally the collective net benefit

- Investment subsidies could have been lower

- Need to consider different time horizons and present time preference from the collectivity and the private point of view

- Difficulties to account for the possibility that agricultural land would be used for another activity in the business-as-usual scenario

- Need for further methodological developments → TWWR tailored environmental and social indicators

- Need for more feedbacks / lessons from experiences
Thank you for your attention