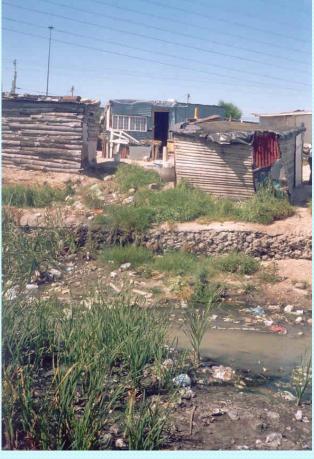


USE OF GREYWATER FOR FOOD PRODUCTION IN HOMESTEAD GARDENS OF SOUTH AFRICA


N. Rodda¹, H.M. du Plessis² and G. Backeberg² ¹ University of KwaZulu-Natal; ² Water Research Commission South Africa

What is greywater?

- All non-toilet domestic wastewater:
 - Bath / shower / handbasin
 - Laundry
 - Kitchen
- Toilet wastewater (blackwater) NOT included.
- Some definitions also exclude kitchen wastewater.
- Sewered areas: greywater represents about 65% of total wastewater.
 Unsewered areas: greywater represents up to 100% of total wastewater.

Uncontrolled greywater is an environmental and health hazard.

Photos K. Carden, UCT

Why use greywater for irrigation?

Water scarcity.

Pressure on freshwater sources.

- Potential benefit of greywater use for irrigation
 - reliable source of water.
 - food security, informal employment.
 - improved health, environmental quality.

Concerns about the use of greywater for irrigation

Human health.

Plant growth and yield.

Ability of soil to support plant growth.

Guidance for greywater irrigation

- Managing Uncertainty and Risk
- Guide to Greywater Constituents (Greywater Quality)
- Guide to Mitigation of Greywater Quality by Treatment or by Agricultural Practices
- Guide to Irrigation Volumes

Managing Uncertainty and Risk

- A hazard becomes a risk only when people, plants or soil come in contact with it (exposure).
- For example:
 - Hazard may be health-related bacteria, e.g. *E. coli*.
 - Risk of illness exists if *E. coli* ingested by people.
 - To prevent the risk (illness)
 - remove *E. coli* from greywater.
 - prevent *E. coli* from coming into contact with hands or crops.
 - make sure that *E. coli* on hands or crops are removed or killed.

Managing Uncertainty and Risk

- So risk can be managed by:
 - Removing hazards in greywater (improve quality).
 - Preventing people/plants/soil from coming into contact with hazards in greywater (exposure barriers).

Managing Uncertainty and Risk

Three categories, depending on how risk is managed.

Category 1:

No greywater analysis or treatment; Strict barriers to exposure.

Category 2:

Minimum greywater analysis so that greywater quality is controlled; Slightly less strict barriers.

Category 3:

Full greywater analysis; Least strict barriers.

Examples of Restrictions

- Restrictions relating to human health
 e.g. avoiding direct contact of greywater with
 edible crop; washing, peeling and cooking crop.
- Restrictions relating to impacts on plant growth and yield

e.g. avoiding contact with leaves; leaching to minimise salinity.

 Restrictions relating to impacts on soil e.g. addition of gypsum to soil.

Guide to Greywater Quality

Minimum analysis

- Electrical Conductivity (EC)
- Sodium Adsorption Ratio (SAR)
- E. coli
- pH
- Full analysis Minimum analysis plus
 - Boron
 - Chemical Oxygen Demand (COD)
 - Oil and grease
 - Suspended solids
 - Total inorganic nitrogen
 - Total phosphorus

Mitigation of Greywater Quality

- Integrated mitigation practices (part of irrigation and agricultural practice).
 Physico-chemical constituents, e.g. boron, EC, pH, SAR.
- Greywater treatment systems.
 Organic and biological constituents, e.g.
 COD, oil and grease, suspended solids, health-related bacteria.

Guide to Irrigation volumes

- Quantitative estimate of maximum water use based on
 - Reference evapotranspiration
 - Crop factor (based on plant water use)
 - Area irrigated

Presented as **lookup tables** to be accessible to users with little technical background.

Qualitative considerations for

- Type of soil, hence frequency and means of greywater application
- Adjustment for recent rainfall

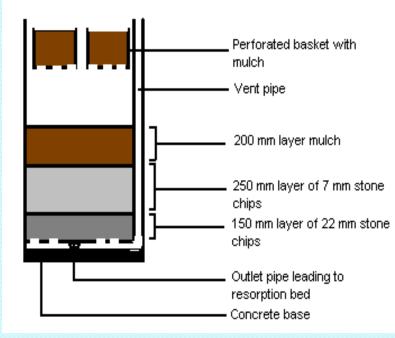
Rural / semirural small plots

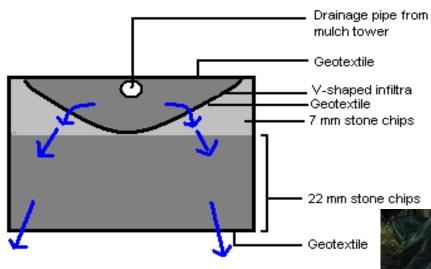
eThekwini Municipality

Greywater treatment systems: Examples Tower gardens - Rural villages

From Crosby C. (2005). *The Water Wheel*, January/February 2005, 10-13.

'Agritubes' – informal settlements


eThekwini Municipality


Greywater treatment: Mulch tower

Buffalo City Municipality; UKZN pilot study

Greywater treatment: Resorption bed, infiltration zone

Buffalo City Municipality; UKZN pilot study

The importance of people!!

 Greywater irrigation works only if the people using it are committed to making it work.

Commitment means:

- Greywater use holds value for the users.
- Users are involved from the beginning.
- Users are given the information and training to use the system properly.
- Users have somewhere to go with questions and problems.

Sustainable Use of Greywater in Small-Scale Agriculture and Gardens in South Africa GUIDANCE REPORT

Nicola Rodda, Kirsty Carden & Neil Armitage

Acknowledgements

- Funding
 - Water Research Commission
 - With co-funding from
 - eThekwini Municipality
 - National Research Foundation
 - Stockholm Environment Institute
- Research partners
 - Prof Neil Armitage and Mrs Kirsty Carden, University of Cape Town
- Students of School of Life Sciences, UKZN
 - Lumka Salukazana, Siobhan Jackson, Preshanthie Naicker, Graham Taylor, Teboho Chalale, Manogrie Chetty