

CONSTRUCTION OF NEW IRRIGATION AND DRAINAGE SYSTEMS AIMED AT POLLUTION EMISSION REDUCTION IN RICE-BASED CROPPING SYSTEMS, SOUTH OF CHINA

Dong Bin, Cui Yuanlai and Mao Zhi

Wuhan University, China

dongbin@whu.edu.cn

Presentation outlines

- 1. Background
- 2. Research needed
- 3. General aproaches
- 4. Methodology
- 5. Study sites
- 6. Results and conslusions

Background

Rice, one of staple food crops in China, is also the crop consuming much water and fertilizer.

- 27.4% of total planting area
- 36.3% of total food crop production
- 55-65% of total agricultural irrigation water amount
- > 180 kg/ha nitrogen fertilizer applied in average,

double the world average level

> 20~30% nitrogen fertilizer utilization efficiency

Background

Data in 2014 from Ministry of Agr. showed that in China, agricultural non-point source pollution (ANPSP) has already become the main source of total nitrogen and total phosphorus emissions

Data shows that the nitrogen and phosphorus load in water in unit area of paddy field caused by seepage and runoffs is more than 4 times higher than that in dry land

Research needed

- From water quantity management only to both quantity and quality management through multiple disciplinary study
 From the simply water saving and yield improving point view to integrated approaches for saving water, yield sustainability,
 - efficient water and fertilizer use and nutrient loading reduction
- 3. Farm water environment restoration
- 4. Spatial and temporal variation of nitrogen and phosphorus losses
- 5. Modeling development for management, evaluation, knowledge transfer and scenarios simulation

General approaches

Concept of Four Lines of Defense

- **1. Efficient water and fertilizer utilization at farm level**
- 2. Field drainage ditches (Eco-ditches)
- 3. Constructed wetlands: such as irrigation ponds & reservoirs, or created wetlands
- 4. Ecological trunk channels

General approaches

Methodology

Subject of Study Method **Expected Results** Lysimeter **Mechanism of saving** experiments water, fertilizer use Reducing nutrient losses at the **Performance of water** saving, yield source Plot improvement, experiments • Target setting for saving water, efficient water & fertilizer use and sustaining yield, efficient use of nutrient loading water & fertilizer and nutrient reduction loading reduction **Typical regulation** Field mode and its experiments adaptability in different regions

Methodolgy

Study sites

Study sites

Results and conslusions

Combined effects of the Four lines of defence (%)

Pollutants reduction	TN	ТР
1 st line of defence	16	8.5
2 nd line of defence	23.7	14.9
3 rd line of defence	52.7	50.0
4 th line of defence	30	12
Total reduction	69	61

Results and conslusions

Acknowledgment

1. National Natural Scientific Foundation of China

2. "948" Program, Ministry of Water Resources

3. Jiangxi Provincial Water Resources Bureau

Thanks !

