

SUB-IRRIGATION AND CONTROLLED DRAINAGE INCREASE YIELDS AND MITIGATE ACID LOADING IN FINNISH CULTIVATED ACID SULFATE SOILS

Seija Virtanen seija.virtanen@tukisaatio.fi

Jaana Uusi-Kämppä Kari Ylivainio Peter Österholm Markku Yli-Halla

L'IRRIGATION SOUTERRAINE ET LE DRAINAGE CONTRÔLÉ AUGMENTENT LES RENDEMENTS ET ATTÉNUENT LA CHARGE ACIDE DANS LES SOLS SULFATÉS ACIDES FINLANDAIS

Seija Virtanen

seija.virtanen@tukisaatio.fi

Jaana Uusi-Kämppä Kari Ylivainio Peter Österholm Markku Yli-Halla

Presentation outlines

- 1. Background information
- 2. Experimental setup
- 3. Results
- 4. Discussion
- 5. Conclusion

Hydrological conditions in Finland

EUROPEAN SOIL BUREAU

Prevalent water management systems in Europe

Code for normal presence and purpose of an existing water management system in agricultural land on more than 50% of the Soil Typological Unit (STU)

% OF MAP:	(Attribute WM1):	
83 %	No information	
0 %	Not applicable (no agriculture)	
13 %	No water management system	
4 %	A water management system exists to alleviate waterlogging (drainage)	
1%	A water management system exists to alleviate drought stress (irrigation)	
1 %	A water management system exists to alleviate salinity (drainage)	
1 %	A water management system exists to alleviate both waterlogging and drought stress	0?
1%	A water management system exists to alleviate both waterlogging and salinity	SI /
	Non soils	

http://esdac.jrc.ec.europa.eu/resource-type/european-soil-database-maps

WORKSHOP: Future of Drainage under environmental challenges and emerging technologies

The most important limitation to agricultural land use in Europe

26th ERC & 66th IEC

Code of the most important limitation to agricultural use of the STU.

% OF MAP:	(Attribute AGLIM1):
2%	No information
42 %	No limitation to agricultural use
13 %	Gravelly (over 35% gravel diameter < 7.5 cm)
8%	Stony (presence of stones diameter > 7.5 cm, impracticable mechanisation)
11 %	Lithic (coherent and hard rock within 50 cm)
0%	Concretionary (over 35% concretions diameter < 7.5 cm near the surface)
0%	Petrocalcic (cemented or indurated calcic horizon within 100 cm)
0%	Saline (electric conductivity > 4 mS.cm 1 within 100 cm)
1%	Sodic (Na/T > 6% within 100 cm)
0%	Glaciers and snow caps
0%	Soils disturbed by man (i.e. landfills, paved surfaces, mine spoils)
0%	Fragipans
2%	Excessively drained
4%	A Imost always flooded
0%	Eroded phase, erosion
17 %	Phreatic phase (shallow water table)
0%	Duripan (silica and iron cemented subsoil horizon)
0%	Petroferric horizon
1%	Permafrost
:	Non soils

http://esdac.irc.ec.europa.eu/resource-type/european-soil-database-maps

WORKSHOP: Future of Drainage under environmental challenges and emerging technologies

Acid sulphate soils in Finland

- The largest AS areas in Europe are located in Finland
- AS fields have high economic value due to their high yields
- Acid loads from fields are hazardous to aqueous ecosystems
- Large fish kills have occurred after dry summers (*e.g.* 2006)

FeS + FeS₂ (FeS) + FeS₂

Can off-site hazards of AS soils be mitigated by controlled drainage and subirrigation ?

-> Hypothesis: acid loads decrease

Do controlled drainage and subirrigation result in better yields ?

-> Hypothesis: yields increase

Experimental set up

WORKSHOP: Future of drainage under environmental challenges and emerging technologies

Results I Groudwater table variation in the fields

Results II Acidity of discharge water

1

Discussion

WORKSHOP: Future of drainage under environmental challenges and emerging technologies

FMI

Conclusions

- The off-site hazards of AS soils can be slightly mitigated by controlled drainage and subirrigation -> Effects in dry summer are unknown
- Yields were higher only in one summer
 -> Effects in dry summer are unknown

Thank you for your attention!

Merci beaucoup pour votre attention !

Acknowledgements to:

_____ *_____***

WORKSHOP: Future of drainage under environmental challenges and emerging technologies